
Molecular Dynamics Simulations Demystified:
(Part II) Practical Aspects and Software

Instructor: Jerelle Joseph
email: jerellejoseph@princeton.edu

Duke Center for Quantitative Living Systems April 2025

Contents

• Introduction to Thermostats and Barostats

– Measuring temperature

– Measuring pressure

– Adjusting Temp.: Thermostats

– Adjusting pres.: Barostats

• MD Software

• Energy conservation

• Timesteps

– Choosing correct timestep

– Large timesteps

• Initializing

– Positions

– Velocities

Energy Conservation & Timestep considerations
• In MD we are numerically integrating Newton’s Equations of motion

• One practical consideration is how much to advance the positions and
velocity by

• What timestep to use?

vi(t+ δt) = vi(t) +
δt

2mi

[fi(t) + fi(t+ δt)] Velocity Verlet algorithm

• In general, Newton’s Equations of motion should obey conservation of
energy

• Therefore, the timestep, should be chosen to numerically conserve this
condition.

• “Numerically conserve” → fluctuations in total energy should be < 1%
over the course of an NVE simulation

• Additionally, the timestep should be small enough to capture fluctuations
in forces.

Choosing the correct timestep: Water example

Symmetric stretch:

v1 ∼ 3700 cm−1
← fastest freq

Asymmetric stretch:

v2 ∼ 3600 cm−1 Bend: v3 ∼ 1600 cm
−1

⇒ to effectively capture v1, we need δt ≤ 0.9fs

Typical motions timestep

bond vibrations 0.5− 1.0fs

bending modes 2.0fs

translations 5− 10fs

Rule-of-thumb: for numerical stability/accuracy, common integrators should
employ timestep that is at least an order of magnitude smaller than the fastest
frequency of motion needed to describe the system

Note: Intramolecular motions are generally faster than intermolecular ones

τ =
1

vc
← time

τ1 =
1

3700 cm−1
× 3× 1010cms−1

τ1 ∼ 9× 10
−15

s

∼ 9fs

We can work out the time related to the

fastest frequency motion in our system.

Choosing the correct timestep
Why don’t we use the smallest δt possible?
total time to simulate = nstep ∗ δt

• If t is the target amount of time we need to simulate to capture the relevant
phenomenon we are probing,

• as δt decreases, nstep needs to increase to achieve the same t

• This means that with smaller δt, our actual (wall clock time) of our sim-
ulation is longer

• In general, δt should be small enough to capture the fluctuations in forces

• SHAKE, RATTLE → these algorithms can be used to constrain certain
motions and allow for larger δt

The Catastrophe of a large timestep
• Choose too large a timestep results in catastrophic explosions!

• Explosions usually occur due to lack of energy conservation

• Instead we have accumulation of energy due to an overestimation of par-

ticle displacements. Let’s see why

• When integrating equations of motion, for each timestep δt, we are as-

suming that the force is constant over δt

Position Update Step: The position is updated using

the current force, and this assumes that the force

remains approximately constant throughout

the timestep δt.

r(t+ δt) = r(t) + v(t)δt+
f(t)

2m
δt

2

The Catastrophe of a large timestep
• But if δt is too large, then the force is no longer constant. Hence, we will

be using the “wrong” force in our algorithm for large δt

• Therefore, we will not “sense” the curvature in the potential energy

• Consequently, we overproject particle displacements, and energies and

forces get progressively worse.

Initialization of positions
• Positions: can obtain these from an experimental structure (e.g. for a
protein), placing molecules on a grid with random rotations (e.g., for water
molecules)

• In general, because our simulation algorithm relies on forces, we need to
be careful to avoid particle overlaps that can lead to “explosions”

• However even with “good” a starting structure, there may still be large
forces (e.g., due to force field paramters)

• There are several strategies that can be used to “massage” the initial
structure and relax the system

– Use energy minimization algorithms

– Start with a Monte Carlo simulation

– Impose artificial restraints/limits on initial displacements

– Start with smaller timesteps

Initialization of velocities: Maxwell–Boltzmann Distribution

• Velocities: we often choose the initial velocities to obtain a given initial
temperature

• The initial velocities of particles are usually drawn from a Maxwell–

Boltzmann distribution, which describes the distribution of velocities
for particles in an ideal gas at thermal equilibrium

P (vi,x) =

)

mi

2πkBT
exp

(

−

miv
2

i,x

2kBT

)

• The distribution depends on the temperature T and the mass m of the
particles, and it ensures that the system’s kinetic energy corresponds to
the desired temperature

Initialization of velocities: Maxwell–Boltzmann Distribution
• The Maxwell–Boltzmann Distribution has the general form of a Gaussian
distribution:

P (vi,x) =

)

mi

2πkBT
exp

(

−
miv

2

i,x

2kBT

)

P (vx) =
1√
2πσ2

exp

(

−
v2x

2σ2

)

,

where σ2 is the variance, given by: σ2

i,x = kBT
mi

• The velocity distribution is Gaussian with zero mean 〈vi,x〉 = 0

• In practice, we draw random velocities from a Gaussian distribution
(normal) with mean=0 and calculated standard deviation σi,x

• Natively, MD should correspond to the NV E ensemble. Thus, additional

algorithms are needed to approximate the target ensemble

• Thermostats: these are used to control the effective temperature in an

MD simulation

• Barostats: these are used to control the pressure in a simulation

Simulating under different conditions (ensembles):
Thermostats and Barostats:

measurement (T (t), p(t))

Algorithm:
Thermostat/
Barostat

Perturb system to
achieve target (T ∗, p∗)

Simulating under different conditions (ensembles):
Thermostats and Barostats:

• Thermostats and barostats are like feedback controllers that adjust the
system based on observation of variables that relate to the
target temperature/pressure (T ∗, p∗)

• Based on our measurement of the instantaneous temperature, T (t), or
pressure, p(t), these will perturb the system so that it goes close to the
prescribed target (T ∗, p∗)

• T ∗, p∗ are chosen according to the desired ensemble

• Note T and p will fluctuate during the simulation

• However, the goal is: for t → ∞, 〈T (t)〉 → T ∗

Measuring temperature in an MD simulation
• Temperature, T , is a thermodynamic quantity which we can compute from
simulations using ensemble averages

• Here, the kinetic energy is used to estimate the temperature

• According to the equipartition principle, the average kinetic energy per
degree of freedom is: kBT

2

• Hence, for an N -particle system in 3D, the average kinetic energy is given
by

〈K〉 = 3N ∗
kBT

2

• It follows that the average system temperature is: 〈T 〉 = 2〈K〉
kB3N

• And the instantaneous temperature is: T = 2k(t)
kB3N where, k(t) = 1

2

∑
i
mivi(t)vi(t)

• This is the most common way to estimate the temperature (i.e., from the
kinetic energy)

Velocity Rescaling

Scale velocities at some frequency (so after n timesteps) so that k(t) yields
T (t) → T ∗

Implementation

(i) T (t) = 2k(t)
3NkB

= 2
3NkB

1
2

∑

i
miv

2
i

(ii) λ =
√

T ∗/T (t)
(iii) vi

′ = λvi

Result

k′(t) =
1

2

∑

i

miλviλvi = λ2k(t)

T ′(t) = λ2T (t)

T ′(t) =
T ∗

T (t)
T (t) = T ∗

Velocity rescaling:
Simple/cheap algorithm for adjusting temp.

Velocity Rescaling

Scale velocities at some frequency (so after n timesteps) so that k(t) yields
T (t) → T

∗

Note, this is not technically correct from a thermodynamics perspective!

Why?

In the limit of rescaling velocities every step, results in a isokinetic ensemble
and not the canonical (NV T) ensemble.
Isokinetic → Kinetic energy is the same value at event time step.

→ σ
2

K
= 0

Velocity rescaling:
Simple/cheap algorithm for adjusting temp.

Velocity rescaling:
Simple/cheap algorithm for adjusting temp.

Velocity Rescaling

Scale velocities at some frequency (so after n timesteps) so that k(t) yields
T (t) → T

∗

Isokinetic → Kinetic energy is the same value at event time step.

→ σ
2

K
= 0

BUT, at a given temperature, statistical mechanics predicts:

σ
2

k
=

〈

k
2
〉

− 〈k〉2

=
3N (kBT)

2

2
%= 0

i.e., the canonical ensemble does in fact exhibit Kinetic energy fluctuations!

Thermostats: Adjusting temperature
• To implement a canonical constant-temperature simulation, we need to
weakly couple the system to a fictitious heat bath that imposes the desired
temperature

• Noting that T will fluctuate during the simulation. Hence, the goal is
→T (t)〉 → T

∗ for t → ∞

• There is no uniquely “correct” way of doing this. Possible approaches can
be broadly classified as stochastic (e.g., Andersen, Langevin) or determin-
istic (e.g., Nosé-Hoover thermostat).

Desirable features of thermostats:

• Generate the correct microstate distribution – i.e. preserve thermodynam-
ics; meaning it does not mess up the canonical distribution of microstates,
if we are in the NVT ensemble

• If possible, minimally disrupts the realistic dynamics. Important espe-
cially if we care about properties that depend on the momenta/velocities
of our system (transport properties)

Andersen Thermostat: Stochastic algorithm

• Parameter, ν, defines the frequency with which the system collides with

the heat bath.

• Probability of collision over the small interval of time δt

p = νδt

• ν is typically very small; in the region of 0.001 or 0.01 inverse units of δt

For each step:
 do MD stuff (i.e., update positions, velocities, forces)

 for each particle:
 get r = u (0,1) # r is a random number
 if r < p:
 sample new velocity for particle from Maxwell-Boltzmann Distribution

• In practical terms, the new velocity of particle i is drawn from a Gaussian

distribution with mean = 0 and σ
2 = kBT

mi

Andersen Thermostat: Stochastic algorithm

• Parameter, ν, defines the frequency with which the system collides with
the heat bath.

• Probability of collision over the small interval of time δt

p = νδt

• ν is typically very small; in the region of 0.001 or 0.01 inverse units of δt

• The frequency ν determines the coupling strength between the bath and
the particle system.

• This algorithm is guaranteed to generate a canonical distribution, but the
reassignment of velocities may strongly affect the dynamics (notably the
velocity auto-correlation function).

• Verdict: The Andersen thermostat is useful for sampling conformational
space, but not so much for the computation of time-dependent properties.

• One of the “better” thermostats

• Deterministic approach: additional terms are included in the equations

of motion, which correspond to the heat bath

• i.e., there are additional variables that need to be integrated, which cor-

respond to a fictitious bath that regulates the temperature

• Verdict: The Nosé–Hoover thermostat only mildly affects the dynamics

of particles, so dynamic properties are relatively safe to compute with this

thermostat

Nosé–Hoover Thermostat: Deterministic algorithm

Thermostats: Which one to use?

• For relaxing initial structures:

– use a cheap/simple thermostat

– velocity rescaling, Berendsen thermostat

• For thermodynamic properties (i.e., to reproduce the canonical en-
semble):

– avoid velocity rescaling/Berendsen

– use Andersen, Langevin thermostat

• For dynamical properties:

– Safest approach is to first thermostat the system to the desired tem-
perature and then simulate in NVE ensemble (i.e., no thermostat)

– Next best approach is to use Nosé–Hoover or some algorithm that
minimally perturbs the dynamics

Measuring pressure in an MD simulation
As with temperature, pressure is a thermodynamic quantity and so we can also
compute it using an ensemble average.

The average pressure is given by:

〈p〉 =
1

3V

〈

2K +
[

i

f
i
· ri

]

where V is the volume. The first term relates to the ideal gas and the second
term is the virial term (arises due to interparticle forces).

And at any given point in time, we can estimate the instantaneous pressure as:

p =
1

3V (t)

[

2k(t) +
[

i

f
i
(t)ri(t)

]

Where k(t) = 1

2

∑

i
mivi(t)vi(t)

〈K〉 = 3N ∗
kBT

2

Common Barostats

• Many of the approaches developed for adjusting temperature have also
been reformulated to control the pressure

• Here, the primary goal is the adjust the pressure

Approach

(* = best methods to use)
Description

Volume Rescaling Scale volume based on estimated pressure p(t) vs. target pressure

Berendsen Barostat
Weak coupling to pressure bath that leads to rescaling (does not
generate true NPT ensemble)

Nosé-Hoover Barostat*
Employ additional EOM variables to tune the pressure (works
isotopically; assumes uniform pressure in all directions)

Parrinello-Rahman Barostat**
Similar to Nosé-Hoover but applied independently to different unit
cell vectors (anisotropy allowed)

MTTK* Corrects Parrinello-Rahman for small systems
Monte Carlo* Use MC to adjust the volume with correct probability distribution

Extra algorithms/schemes that are important
(not MD specific)

• Periodic boundary conditions: tile the space with exact replicas of
main simulation cell to avoid surface/edge effects and better mimic bulk
behavior

– Wrapping particles: If particles leave the simulation cell at one
end it reenters at the other end (think: of a 2D video game)

– Minimum image convention: If simulation cell length is L parti-
cles further than L/2 away cannot interact with each other

• Cutoff distances: Used to truncate pairwise potentials; dictating up to
what range of distances particles can interact with each other

Minimum image convention Cutoff distancesWrapping

PBC

MD Simulation Software

Tips for getting started:

• Read through the documention

• Find a good beginner tutotial

• Run a simulation to reproduce existing results

Software Language Beginner Friendly Best For Online Support

LAMMPS C++ Moderate Large-scale atomic/molecular
systems, materials science

Excellent (active community, extensive
documentation)

GROMACS C, C++ Moderate Biomolecules (proteins, lipids,
nucleic acids), high performance

Strong (active user base, tutorials)

OpenMM Python, C++ Yes (Python API) Biophysics, GPU-accelerated
simulations

Good (active development, user forums)

HOOMD-blue Python, C++ Moderate Coarse-grained, soft matter,
GPU-focused

Strong (active community, documenta-
tion)

NAMD C++ Moderate Biomolecules, scalable parallel
simulations

Excellent (tutorials, forums)

AMBER C, Fortran Less friendly (complex setup) Biomolecular simulations, force
field development

Moderate (some community support)

CHARMM Fortran, C Less friendly Biomolecular simulations, force
fields

Limited (mainly institutional support)

AMBER is partially open source and CHARMM is not. All others are open source

Complementary MD Software
• Setting up the initial structures/system

– Packmol*

– PyMol*

– CHARMM*

– Moltemplate (for LAMMPS users)

– Avogadro (good for small molecules)

– UCSF Chimera/ChimeraX (alternative to PyMol)

– GROMACS Tools* (e.g., pdb2gmx, editconf, genbox)

• Analysis of MD trajectories

– MDAnalysis*

– MDTraj

– CPPTRAJ (commonly used with AMBER, but supports other for-
mats)

– PLUMED (for enhanced sampling/free energy calculations, also has
analysis features)

• Visualization and Analysis

– Ovito*

– VMD*

– ChimeraX
* = recommendations

Example: Computing the radius of gyration of a
disordered protein in LAMMPS

1.Configuration/structure file (number of particles,
some force field info, cartesian coordinates of
particles, molecule connectivity)

2.LAMMPS Parameter file (force field info*, conditions,
instructions for writing output)

3.Run simulation and compute protein Rg

* Could also be a separate file that is called within the LAMMPS parameter file

Rg of K25 protein: Protein sequence

Particle types in Mpipi force field

Configuration file

Configuration file: Initial particle positions (“atoms”)

Configuration file: Connectivity (bonds)

LAMMPS parameter file: Force field information

LAMMPS parameter file: Force field information

LAMMPS parameter file: Timestep, thermostat etc

Simulation output file: Timestep vs Rg

Tutorial on MD Software by Nathaniel Hess
(including introduction to LAMMPS)

https://drive.google.com/drive/folders/1XaKymQV4uPrjMCQr2crK
HWvSGJsr0ZCH?usp=sharing

https://drive.google.com/drive/folders/1XaKymQV4uPrjMCQr2crKHWvSGJsr0ZCH?usp=sharing
https://drive.google.com/drive/folders/1XaKymQV4uPrjMCQr2crKHWvSGJsr0ZCH?usp=sharing

