# Molecular Dynamics Simulations Demystified: (Part II) Practical Aspects and Software

Instructor: **Jerelle Joseph** email: jerellejoseph@princeton.edu

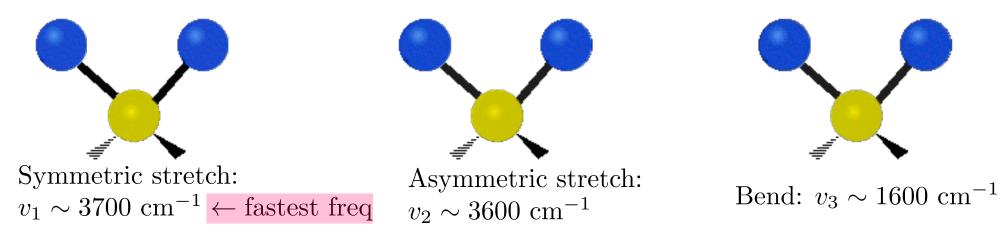
### Contents

- Energy conservation
- Timesteps
  - Choosing correct timestep
  - Large timesteps
- Initializing

- Introduction to Thermostats and Barostats
  - Measuring temperature
  - Measuring pressure
  - Adjusting Temp.: Thermostats
  - Adjusting pres.: Barostats
- MD Software

- Positions
- Velocities

# Energy Conservation & Timestep considerations


- In MD we are numerically integrating Newton's Equations of motion
- One practical consideration is how much to advance the positions and velocity by
- What timestep to use?

$$\mathbf{v}_i(t+\delta t) = \mathbf{v}_i(t) + \frac{\delta t}{2m_i} [\mathbf{f}_i(t) + \mathbf{f}_i(t+\delta t)]$$
 Velocity Verlet algorithm

- In general, Newton's Equations of motion should obey conservation of energy
- Therefore, the timestep, should be chosen to numerically conserve this condition.
- "Numerically conserve"  $\rightarrow$  fluctuations in total energy should be < 1% over the course of an *NVE* simulation
- Additionally, the timestep should be small enough to capture fluctuations in forces.

# Choosing the correct timestep: Water example

Note: Intramolecular motions are generally faster than intermolecular ones



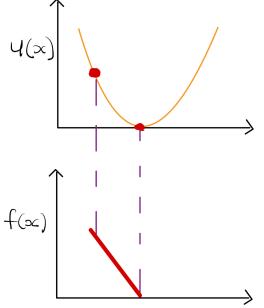
**Rule-of-thumb:** for numerical stability/accuracy, common integrators should employ timestep that is at least an order of magnitude smaller than the fastest frequency of motion needed to describe the system

| We can work out the time related to the fastest frequency motion in our system.                                                                                                             | $\Rightarrow$ to effectively cap                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $\tau = \frac{1}{vc} \leftarrow \text{time}$ $\tau_1 = \frac{1}{3700 \text{ cm}^{-1} \times 3 \times 10^{10} \text{ cm}^{-1}}$ $\tau_1 \sim 9 \times 10^{-15} \text{ s}$ $\sim 9 \text{fs}$ | Typical mo<br>bond vibra<br>bending mo<br>translation |

| $\Rightarrow$ to effectively capture $v_1$ , we need $\delta t \leq 0.9$ fs |                     |  |  |  |
|-----------------------------------------------------------------------------|---------------------|--|--|--|
|                                                                             |                     |  |  |  |
| Typical motions                                                             | timestep            |  |  |  |
| bond vibrations                                                             | $0.5 - 1.0 { m fs}$ |  |  |  |
| bending modes                                                               | $2.0 \mathrm{fs}$   |  |  |  |
| translations                                                                | $5-10 \mathrm{fs}$  |  |  |  |

### Choosing the correct timestep

Why don't we use the smallest  $\delta t$  possible? total time to simulate  $= n_{\text{step}} * \delta t$ 


- If t is the target amount of time we need to simulate to capture the relevant phenomenon we are probing,
- as  $\delta t$  decreases,  $n_{\text{step}}$  needs to increase to achieve the same t
- This means that with smaller  $\delta t$ , our actual (wall clock time) of our simulation is longer
- In general,  $\delta t$  should be small enough to capture the fluctuations in forces
- SHAKE, RATTLE  $\rightarrow$  these algorithms can be used to constrain certain motions and allow for larger  $\delta t$

# The Catastrophe of a large timestep

- Choose too large a timestep results in catastrophic explosions!
- Explosions usually occur due to lack of energy conservation
- Instead we have accumulation of energy due to an overestimation of particle displacements. Let's see why
- When integrating equations of motion, for each timestep  $\delta t$ , we are assuming that the force is constant over  $\delta t$

$$\mathbf{r}(t+\delta t) = \mathbf{r}(t) + \mathbf{v}(t)\delta t + \frac{\mathbf{f}(t)}{2m}\delta t^2$$

**Position Update Step**: The position is updated using the current force, and this assumes that the force remains approximately constant throughout the timestep  $\delta t$ .



# The Catastrophe of a large timestep

- But if  $\delta t$  is too large, then the force is no longer constant. Hence, we will be using the "wrong" force in our algorithm for large  $\delta t$
- Therefore, we will not "sense" the curvature in the potential energy
- Consequently, we overproject particle displacements, and energies and forces get progressively worse.

# Initialization of positions

- **Positions**: can obtain these from an experimental structure (e.g. for a protein), placing molecules on a grid with random rotations (e.g., for water molecules)
- In general, because our simulation algorithm relies on forces, we need to be careful to avoid particle overlaps that can lead to "explosions"
- However even with "good" a starting structure, there may still be large forces (e.g., due to force field paramters)
- There are several strategies that can be used to "massage" the initial structure and relax the system
  - Use energy minimization algorithms
  - Start with a Monte Carlo simulation
  - Impose artificial restraints/limits on initial displacements
  - Start with smaller timesteps

Initialization of velocities: Maxwell–Boltzmann Distribution

- Velocities: we often choose the initial velocities to obtain a given initial temperature
- The initial velocities of particles are usually drawn from a Maxwell– Boltzmann distribution, which describes the distribution of velocities for particles in an ideal gas at thermal equilibrium

$$P(v_{i,x}) = \sqrt{\frac{m_i}{2\pi k_B T}} \exp\left(-\frac{m_i v_{i,x}^2}{2k_B T}\right)$$

• The distribution depends on the temperature T and the mass m of the particles, and it ensures that the system's kinetic energy corresponds to the desired temperature

Initialization of velocities: Maxwell–Boltzmann Distribution

• The Maxwell–Boltzmann Distribution has the general form of a Gaussian distribution:

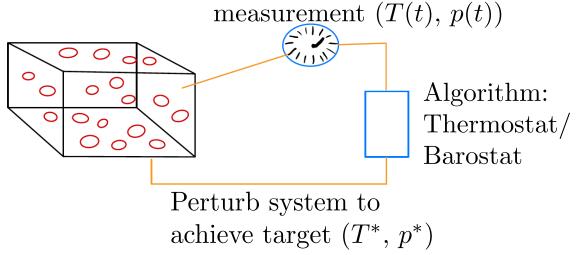
$$P\left(v_{i,x}\right) = \sqrt{\frac{m_i}{2\pi k_B T}} \exp\left(-\frac{m_i v_{i,x}^2}{2k_B T}\right)$$

$$P(v_x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{v_x^2}{2\sigma^2}\right),\,$$

where  $\sigma^2$  is the variance, given by:  $\sigma_{i,x}^2 = \frac{k_B T}{m_i}$ 

- The velocity distribution is Gaussian with zero mean  $\langle v_{i,x} \rangle = 0$
- In practice, we draw random velocities from a Gaussian distribution (normal) with mean=0 and calculated standard deviation  $\sigma_{i,x}$

Simulating under different conditions (ensembles): Thermostats and Barostats:


- Natively, MD should correspond to the *NVE* ensemble. Thus, additional algorithms are needed to approximate the target ensemble
- **Thermostats:** these are used to control the effective temperature in an MD simulation
- Barostats: these are used to control the pressure in a simulation

### Simulating under different conditions (ensembles): Thermostats and Barostats:

- Thermostats and barostats are like feedback controllers that adjust the system based on observation of variables that relate to the target temperature/pressure  $(T^*, p^*)$
- Based on our measurement of the instantaneous temperature, T(t), or pressure, p(t), these will **perturb** the system so that it goes close to the prescribed target  $(T^*, p^*)$
- $T^*, p^*$  are chosen according to the desired ensemble



• However, the goal is: for  $t \to \infty$ ,  $\langle T(t) \rangle \to T^*$ 



### Measuring temperature in an MD simulation

- Temperature, T, is a thermodynamic quantity which we can compute from simulations using ensemble averages
- Here, the kinetic energy is used to estimate the temperature
- According to the equipartition principle, the average kinetic energy per degree of freedom is:  $\frac{k_{\rm B}T}{2}$
- Hence, for an N-particle system in 3D, the average kinetic energy is given by

$$\langle K \rangle = 3N * \frac{k_{\rm B}T}{2}$$

- It follows that the average system temperature is:  $\langle T \rangle = \frac{2\langle K \rangle}{k_{\rm B} 3N}$
- And the instantaneous temperature is:  $T = \frac{2k(t)}{k_B 3N}$  where,  $k(t) = \frac{1}{2} \sum_i m_i v_i(t) v_i(t)$
- This is the most common way to estimate the temperature (i.e., from the kinetic energy)

### Velocity rescaling: Simple/cheap algorithm for adjusting temp.

#### Velocity Rescaling

Scale velocities at some frequency (so after n timesteps) so that k(t) yields  $T(t) \to T^*$ 

#### Implementation

(i) 
$$T(t) = \frac{2k(t)}{3Nk_B} = \frac{2}{3Nk_B} \frac{1}{2} \sum_i m_i v_i^2$$
  
(ii)  $\lambda = \sqrt{T^*/T(t)}$   
(iii)  $v_i' = \lambda v_i$ 

#### Result

$$k'(t) = \frac{1}{2} \sum_{i} m_i \lambda v i \lambda v_i = \lambda^2 k(t)$$
$$T'(t) = \lambda^2 T(t)$$
$$T'(t) = \frac{T^*}{T(t)} T(t) = T^*$$

## Velocity rescaling: Simple/cheap algorithm for adjusting temp.

#### Velocity Rescaling

Scale velocities at some frequency (so after n timesteps) so that k(t) yields  $T(t) \to T^*$ 

**Note**, this is not technically correct from a thermodynamics perspective!

#### Why?

In the limit of rescaling velocities every step, results in a isokinetic ensemble and not the canonical (NVT) ensemble.

Isokinetic  $\rightarrow$  Kinetic energy is the same value at event time step.

$$\rightarrow \sigma_K^2 = 0$$

### Velocity rescaling: Simple/cheap algorithm for adjusting temp.

#### Velocity Rescaling

Scale velocities at some frequency (so after n timesteps) so that k(t) yields  $T(t) \to T^*$ 

Isokinetic  $\rightarrow$  Kinetic energy is the same value at event time step.

$$\rightarrow \sigma_K^2 = 0$$

BUT, at a given temperature, statistical mechanics predicts:

$$\sigma_k^2 = \left\langle k^2 \right\rangle - \left\langle k \right\rangle^2$$
$$= \frac{3N \left(k_B T\right)^2}{2} \neq 0$$

i.e., the canonical ensemble does in fact exhibit Kinetic energy fluctuations!

### Thermostats: Adjusting temperature

- To implement a canonical constant-temperature simulation, we need to weakly couple the system to a fictitious heat bath that imposes the desired temperature
- Noting that T will fluctuate during the simulation. Hence, the goal is  $\langle T(t) \rangle \to T^*$  for  $t \to \infty$
- There is no uniquely "correct" way of doing this. Possible approaches can be broadly classified as stochastic (e.g., Andersen, Langevin) or deterministic (e.g., Nosé-Hoover thermostat).

#### **Desirable features of thermostats:**

- Generate the correct microstate distribution i.e. preserve thermodynamics; meaning it does not mess up the canonical distribution of microstates, if we are in the *NVT* ensemble
- If possible, minimally disrupts the realistic dynamics. Important especially if we care about properties that depend on the momenta/velocities of our system (transport properties)

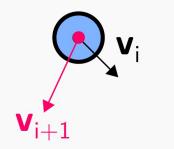
### Andersen Thermostat: Stochastic algorithm

- Parameter,  $\nu$ , defines the frequency with which the system collides with the heat bath.
- Probability of collision over the small interval of time  $\delta t$

$$p = \nu \delta t$$

•  $\nu$  is typically very small; in the region of 0.001 or 0.01 inverse units of  $\delta t$ 

```
For each step:
    do MD stuff (i.e., update positions, velocities, forces)
    for each particle:
        get r = u (0,1) # r is a random number
        if r < p:
            sample new velocity for particle from Maxwell-Boltzmann Distribution
```


• In practical terms, the new velocity of particle *i* is drawn from a Gaussian distribution with mean = 0 and  $\sigma^2 = \frac{k_B T}{m_i}$ 

### Andersen Thermostat: Stochastic algorithm

- Parameter,  $\nu$ , defines the frequency with which the system collides with the heat bath.
- Probability of collision over the small interval of time  $\delta t$

$$p = \nu \delta t$$

- $\nu$  is typically very small; in the region of 0.001 or 0.01 inverse units of  $\delta t$
- The frequency  $\nu$  determines the coupling strength between the bath and the particle system.
- This algorithm is guaranteed to generate a canonical distribution, but the reassignment of velocities may strongly affect the dynamics (notably the velocity auto-correlation function).
- Verdict: The Andersen thermostat is useful for sampling conformational space, but not so much for the computation of time-dependent properties.



### Nosé–Hoover Thermostat: Deterministic algorithm

- One of the "better" thermostats
- **Deterministic** approach: additional terms are included in the equations of motion, which correspond to the heat bath
- i.e., there are additional variables that need to be integrated, which correspond to a fictitious bath that regulates the temperature
- Verdict: The Nosé–Hoover thermostat only mildly affects the dynamics of particles, so dynamic properties are relatively safe to compute with this thermostat

### Thermostats: Which one to use?

- For relaxing initial structures:
  - use a cheap/simple thermostat
  - velocity rescaling, Berendsen thermostat
- For **thermodynamic properties** (i.e., to reproduce the canonical ensemble):
  - avoid velocity rescaling/Berendsen
  - use Andersen, Langevin thermostat
- For dynamical properties:
  - Safest approach is to first thermostat the system to the desired temperature and then simulate in NVE ensemble (i.e., no thermostat)
  - Next best approach is to use Nosé–Hoover or some algorithm that minimally perturbs the dynamics

### Measuring pressure in an MD simulation

As with temperature, pressure is a thermodynamic quantity and so we can also compute it using an ensemble average.

The average pressure is given by:  $\langle K \rangle = 3N * \frac{k_{\rm B}T}{2}$ 

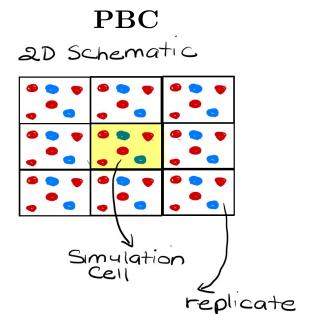
given by: 
$$\langle n \rangle = \frac{1}{3V} \left\langle 2K + \sum_{i} \boldsymbol{f}_{i} \cdot \boldsymbol{r}_{i} \right\rangle$$

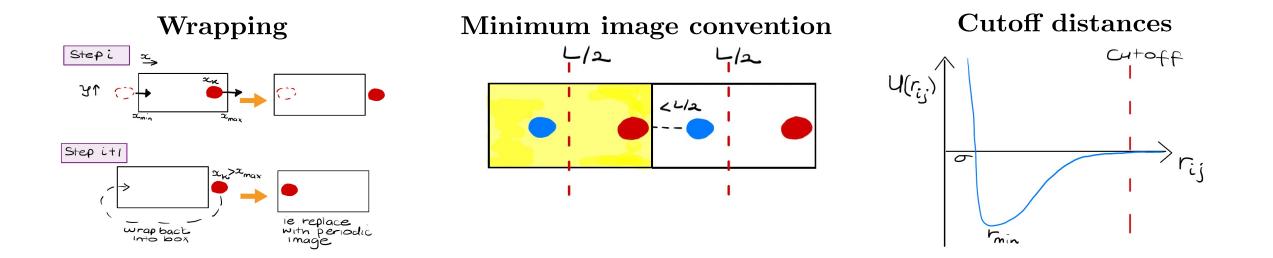
where V is the volume. The first term relates to the ideal gas and the second term is the virial term (arises due to interparticle forces).

And at any given point in time, we can estimate the instantaneous pressure as:

$$p = \frac{1}{3V(t)} \left[ 2k(t) + \sum_{i} \boldsymbol{f}_{i}(t)\boldsymbol{r}_{i}(t) \right]$$

Where  $k(t) = \frac{1}{2} \sum_{i} m_i v_i(t) v_i(t)$ 

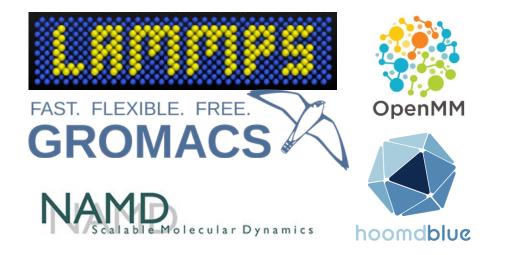

### Common Barostats


- Many of the approaches developed for adjusting temperature have also been reformulated to control the pressure
- Here, the primary goal is the adjust the pressure

| $\begin{array}{ c } \textbf{Approach} \\ (* = best methods to use) \end{array}$ | Description                                                                                                           |  |  |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| Volume Rescaling                                                                | Scale volume based on estimated pressure $p(t)$ vs. target pressure                                                   |  |  |
| Berendsen Barostat                                                              | Weak coupling to pressure bath that leads to rescaling (does not generate true NPT ensemble)                          |  |  |
| Nosé-Hoover Barostat*                                                           | Employ additional EOM variables to tune the pressure (works isotopically; assumes uniform pressure in all directions) |  |  |
| Parrinello-Rahman Barostat**                                                    | Similar to Nosé-Hoover but applied independently to different unit<br>cell vectors (anisotropy allowed)               |  |  |
| MTTK*                                                                           | Corrects Parrinello-Rahman for small systems                                                                          |  |  |
| Monte Carlo*                                                                    | Use MC to adjust the volume with correct probability distribution                                                     |  |  |

# Extra algorithms/schemes that are important (not MD specific)

- **Periodic boundary conditions**: tile the space with exact replicas of main simulation cell to avoid surface/edge effects and better mimic bulk behavior
  - Wrapping particles: If particles leave the simulation cell at one end it reenters at the other end (think: of a 2D video game)
  - Minimum image convention: If simulation cell length is L particles further than L/2 away cannot interact with each other
- **Cutoff distances**: Used to truncate pairwise potentials; dictating up to what range of distances particles can interact with each other





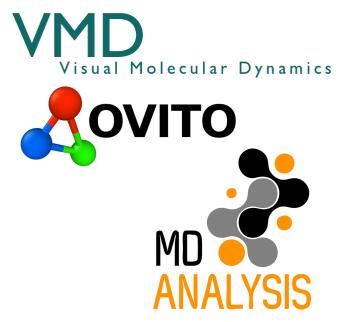

# **MD** Simulation Software

| Software   | Language    | Beginner Friendly             | Best For                         | Online Support                         |
|------------|-------------|-------------------------------|----------------------------------|----------------------------------------|
| LAMMPS     | C++         | Moderate                      | Large-scale atomic/molecular     | Excellent (active community, extensive |
|            |             |                               | systems, materials science       | documentation)                         |
| GROMACS    | C, C++      | Moderate                      | Biomolecules (proteins, lipids,  | Strong (active user base, tutorials)   |
|            |             |                               | nucleic acids), high performance |                                        |
| OpenMM     | Python, C++ | Yes (Python API)              | Biophysics, GPU-accelerated      | Good (active development, user forums) |
|            |             |                               | simulations                      |                                        |
| HOOMD-blue | Python, C++ | Moderate                      | Coarse-grained, soft matter,     | Strong (active community, documenta-   |
|            |             |                               | GPU-focused                      | tion)                                  |
| NAMD       | C++         | Moderate                      | Biomolecules, scalable parallel  | Excellent (tutorials, forums)          |
|            |             |                               | simulations                      |                                        |
| AMBER      | C, Fortran  | Less friendly (complex setup) | Biomolecular simulations, force  | Moderate (some community support)      |
|            |             |                               | field development                |                                        |
| CHARMM     | Fortran, C  | Less friendly                 | Biomolecular simulations, force  | Limited (mainly institutional support) |
|            |             |                               | fields                           |                                        |

AMBER is partially open source and CHARMM is not. All others are open source

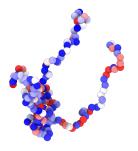


#### Tips for getting started:


- Read through the documention
- Find a good beginner tutotial
- Run a simulation to reproduce existing results

# Complementary MD Software

- Setting up the initial structures/system
  - Packmol\*
  - PyMol\*
  - CHARMM\*
  - Moltemplate (for LAMMPS users)
  - Avogadro (good for small molecules)
  - UCSF Chimera/ChimeraX (alternative to PyMol)
  - GROMACS Tools\* (e.g., pdb2gmx, editconf, genbox)
- Analysis of MD trajectories
  - MDAnalysis\*
  - MDTraj
  - CPPTRAJ (commonly used with AMBER, but supports other formats)
  - PLUMED (for enhanced sampling/free energy calculations, also has analysis features)
- Visualization and Analysis
  - Ovito\*
  - VMD\*
  - ChimeraX








Example: Computing the radius of gyration of a disordered protein in LAMMPS

 Configuration/structure file (number of particles, some force field info, cartesian coordinates of particles, molecule connectivity)



2. LAMMPS Parameter file (force field info\*, conditions, instructions for writing output)

3. Run simulation and compute protein Rg

\* Could also be a separate file that is called within the LAMMPS parameter file

Rg of K25 protein: Protein sequence

K25MAEPR QEFEV MEDHA GTYGL GDRKD QGGYT MHQDQ EGDTD AGLKA EEAGI GDTPS LEDEA AGHVT QARMV<br/>SKSKD GTGSD DKKAK GADGK TKIAT PRGAA PPGQK GQANA TRIPA KTPPA PKTPP SSGEP PKSGD RSGYS<br/>SPGSP GTPGS RSRTP SLPTP PTREP KKVAV VRTPP KSPSS AKSRL

### Particle types in Mpipi force field

K25 MAEPR QEFEV MEDHA GTYGL GDRKD QGGYT MHQDQ EGDTD AGLKA EEAGI GDTPS LEDEA AGHVT QARMV SKSKD GTGSD DKKAK GADGK TKIAT PRGAA PPGQK GQANA TRIPA KTPPA PKTPP SSGEP PKSGD RSGYS SPGSP GTPGS RSRTP SLPTP PTREP KKVAV VRTPP KSPSS AKSRL

М 1 G 2 Κ 3 Т 4 R 5 А 6 D 7 Е 8 Y 9 10 V 11 12 Q W 13 F 14 S 15 Н 16 Ν 17 Ρ 18 С 19 Ι 20

Configuration file

MAEPR QEFEV MEDHA GTYGL GDRKD QGGYT MHQDQ EGDTD AGLKA EEAGI GDTPS LEDEA AGHVT QARMV K25 SKSKD GTGSD DKKAK GADGK TKIAT PRGAA PPGQK GQANA TRIPA KTPPA PKTPP SSGEP PKSGD RSGYS SPGSP GTPGS RSRTP SLPTP PTREP KKVAV VRTPP KSPSS AKSRL

| LAMMPS data  | file for ID | Ρ   |     |  |
|--------------|-------------|-----|-----|--|
| 185 atoms    |             |     |     |  |
| 184 bonds    |             |     |     |  |
| 40 atom type | s           |     |     |  |
| 1 bond types | 6           |     |     |  |
| -300.00000   | 300.00000   | xlo | xhi |  |
| -300.00000   | 300.00000   | vlo | vhi |  |
| -300.00000   | 300.00000   | zlo | zhi |  |
| Masses       |             |     |     |  |
| 1 131.199    | 997         |     |     |  |
| 2 57.0499    |             |     |     |  |
| 3 128.199    | 997         |     |     |  |
| 4 101.099    |             |     |     |  |
| 5 156.199    | 997         |     |     |  |
| 6 71.0800    | 02          |     |     |  |
| 7 115.099    | 998         |     |     |  |
| 8 129.100    | 006         |     |     |  |
| 9 163.199    | 997         |     |     |  |
| 10 99.070    | 000         |     |     |  |
| 11 113.19    | 9997        |     |     |  |
| 12 128.10    | 0006        |     |     |  |
| 13 186.19    | 9997        |     |     |  |
| 14 147.19    | 9997        |     |     |  |
| 15 87.080    | 002         |     |     |  |
| 16 137.10    |             |     |     |  |
| 17 114.09    |             |     |     |  |
| 18 97.120    |             |     |     |  |
| 19 103.09    |             |     |     |  |
| 20 113.19    | 9997        |     |     |  |

| М | 1  |
|---|----|
| G | 2  |
| Κ | 3  |
| Т | 4  |
| R | 5  |
| А | 6  |
| D | 7  |
| Е | 8  |
| Y | 9  |
| V | 10 |
| L | 11 |
| Q | 12 |
| W | 13 |
| F | 14 |
| S | 15 |
| Н | 16 |
| Ν | 17 |
| Р | 18 |
| С | 19 |
| I | 20 |
|   |    |

### Configuration file: Initial particle positions ("atoms")

MAEPR QEFEV MEDHA GTYGL GDRKD QGGYT MHQDQ EGDTD AGLKA EEAGI GDTPS LEDEA AGHVT QARMV K25 SKSKD GTGSD DKKAK GADGK TKIAT PRGAA PPGQK GQANA TRIPA KTPPA PKTPP SSGEP PKSGD RSGYS SPGSP GTPGS RSRTP SLPTP PTREP KKVAV VRTPP KSPSS AKSRL

| 35 87.080002<br>36 137.100006                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------|
| 37 114.099998                                                                                                                          |
| 38 97.120003                                                                                                                           |
| 39 103.099998                                                                                                                          |
| 40 113.199997                                                                                                                          |
|                                                                                                                                        |
| Atoms                                                                                                                                  |
|                                                                                                                                        |
| 1 1 1 0.000000 6.000000 0.000000 0.000000                                                                                              |
| 2 1 6 0.000000 12.000000 0.000000 0.000000                                                                                             |
| 3 1 8 -1.000000 18.000000 0.000000 0.00000                                                                                             |
| 4 1 18 0.000000 24.000000 0.000000 0.00000                                                                                             |
| 5 1 5 1.000000 30.000000 0.000000 0.000000                                                                                             |
| 6 1 12 0.000000 36.000000 0.000000 0.00000                                                                                             |
| 7 1 8 -1.000000 42.000000 0.000000 0.00000                                                                                             |
| 8 1 14 0.000000 48.000000 0.000000 0.00000                                                                                             |
| 9 1 8 -1.000000 54.000000 0.000000 0.00000                                                                                             |
| 10 1 10 0.000000 60.000000 0.000000 0.0000                                                                                             |
| 11 1 1 0.00000 66.00000 0.00000 0.00000                                                                                                |
| 12 1 8 -1.000000 72.000000 0.000000 0.00000                                                                                            |
|                                                                                                                                        |
|                                                                                                                                        |
| 14 1 16 0.500000 84.000000 0.00000 0.0000                                                                                              |
| 15 1 6 0.000000 90.000000 0.000000 0.00000                                                                                             |
| 16 1 2 0.000000 96.000000 0.000000 0.00000                                                                                             |
|                                                                                                                                        |
|                                                                                                                                        |
| 18 1 9 0.000000 108.000000 0.000000 0.0000                                                                                             |
| 18 1 9 0.000000 108.000000 0.000000 0.0000<br>19 1 2 0.000000 114.000000 0.000000 0.0000                                               |
| 18 1 9 0.000000 108.000000 0.000000 0.0000<br>19 1 2 0.000000 114.000000 0.000000 0.0000<br>20 1 11 0.000000 120.000000 0.000000 0.000 |
| 18 1 9 0.000000 108.000000 0.000000 0.0000<br>19 1 2 0.000000 114.000000 0.000000 0.0000<br>20 1 11 0.000000 120.000000 0.000000 0.000 |
| 18 1 9 0.000000 108.000000 0.000000 0.0000<br>19 1 2 0.000000 114.000000 0.000000 0.0000<br>20 1 11 0.000000 120.000000 0.000000 0.000 |
|                                                                                                                                        |

### Configuration file: Connectivity (bonds)

MAEPR QEFEV MEDHA GTYGL GDRKD QGGYT MHQDQ EGDTD AGLKA EEAGI GDTPS LEDEA AGHVT QARMV K25 SKSKD GTGSD DKKAK GADGK TKIAT PRGAA PPGQK GQANA TRIPA KTPPA PKTPP SSGEP PKSGD RSGYS SPGSP GTPGS RSRTP SLPTP PTREP KKVAV VRTPP KSPSS AKSRL

| LAMMPS data file for IDP     | 35 87.080002                                  |                                                 |
|------------------------------|-----------------------------------------------|-------------------------------------------------|
|                              | 36 137.100006                                 | 178 1 18 0.000000 300.000000 300.000000 468.000 |
| 185 atoms                    | 37 114.099998                                 | 179 1 15 0.000000 300.000000 300.000000 474.000 |
| 184 bonds                    | 38 97.120003                                  | 180 1 15 0.000000 300.000000 300.000000 480.000 |
|                              | 39 103.099998                                 | 181 1 6 0.000000 300.000000 300.000000 486.0000 |
| 40 atom types                | 40 113.199997                                 | 182 1 3 1.000000 300.000000 300.000000 492.0000 |
| 1 bond types                 |                                               | 183 1 15 0.000000 300.000000 300.000000 498.000 |
|                              | Atoms                                         | 184 1 5 1.000000 300.000000 300.000000 504.0000 |
| -300.00000 300.00000 xlo xhi |                                               | 185 1 11 0.000000 300.000000 300.000000 510.000 |
| -300.00000 300.00000 ylo yhi | 1 1 1 0.000000 6.000000 0.000000 0.000000     |                                                 |
| -300.00000 300.00000 zlo zhi | 2 1 6 0.000000 12.000000 0.000000 0.000000    | Bonds                                           |
|                              | 3 1 8 -1.000000 18.000000 0.000000 0.000000   |                                                 |
| Masses                       | 4 1 18 0.000000 24.000000 0.000000 0.000000   | 1 1 1 2                                         |
|                              | 5 1 5 1.000000 30.000000 0.000000 0.000000    | 2 1 2 3                                         |
| 1 131.199997                 |                                               | 3 1 3 4                                         |
| 2 57.049999                  |                                               | 4 1 4 5                                         |
| 3 128.199997                 | 7 1 8 -1.000000 42.000000 0.000000 0.000000   | 5 1 5 6                                         |
| 4 101.099998                 | 8 1 14 0.000000 48.000000 0.000000 0.000000   | 6167                                            |
| 5 156.199997                 | 9 1 8 -1.000000 54.000000 0.000000 0.000000   | 7 1 7 8                                         |
| 6 71.080002                  | 10 1 10 0.000000 60.000000 0.000000 0.000000  | 8 1 8 9                                         |
| 7 115.099998                 | 11 1 1 0.000000 66.000000 0.000000 0.000000   | 9 1 9 10                                        |
| 8 129.100006                 | 12 1 8 -1.000000 72.000000 0.000000 0.000000  | 10 1 10 11                                      |
| 9 163.199997                 | 13 1 7 -1.000000 78.000000 0.000000 0.000000  | 11 1 11 12                                      |
| 10 99.070000                 | 14 1 16 0.500000 84.000000 0.000000 0.000000  | 12 1 12 13                                      |
| 11 113.199997                | 15 1 6 0.000000 90.000000 0.000000 0.000000   | 13 1 13 14                                      |
| 12 128.100006                | 16 1 2 0.000000 96.000000 0.000000 0.000000   | 14 1 14 15                                      |
| 13 186.199997                | 17 1 4 0.000000 102.000000 0.000000 0.000000  | 15 1 15 16                                      |
| 14 147.199997                | 18 1 9 0.000000 108.000000 0.000000 0.000000  | 16 1 16 17                                      |
| 15 87.080002                 | 19 1 2 0.000000 114.000000 0.000000 0.000000  | 17 1 17 18                                      |
| 16 137.100006                | 20 1 11 0.000000 120.000000 0.000000 0.000000 | 18 1 18 19                                      |
| 17 114.099998                | 21 1 2 0.000000 126.000000 0.000000 0.000000  | 19 1 19 20                                      |
| 18 97.120003                 |                                               |                                                 |
| 19 103.099998                |                                               |                                                 |
| 20 113.199997                |                                               |                                                 |

М G Κ Т R А D Е Y V 10 11 12 Q W 13 F 14 S 15 Н 16 Ν 17 Ρ 18 С 19

Ι

1

2 3

5

6

7

8

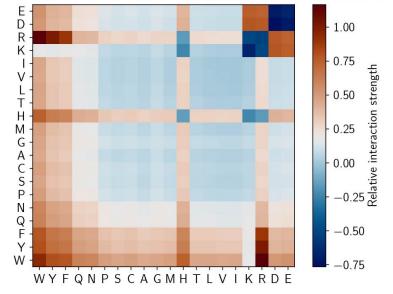
9

### LAMMPS parameter file: Force field information

K25 MAEPR QEFEV MEDHA GTYGL GDRKD QGGYT MHQDQ EGDTD AGLKA EEAGI GDTPS LEDEA AGHVT QARMV SKSKD GTGSD DKKAK GADGK TKIAT PRGAA PPGQK GQANA TRIPA KTPPA PKTPP SSGEP PKSGD RSGYS SPGSP GTPGS RSRTP SLPTP PTREP KKVAV VRTPP KSPSS AKSRL

bond\_coeff 1 9.600 3.81 pair\_style hybrid/overlay wf/cut 25.0 coul/debye 0.131 0.0

pair coeff 1 1 wf/cut 0.039564 6.467950871367303 1 2 19.403852614101908 pair coeff 1 2 wf/cut 0.068017 5.576178403526399 1 2 16.728535210579196 pair\_coeff 1 3 wf/cut 0.032686 6.5677835361737795 1 2 19.70335060852134 pair\_coeff 1 4 wf/cut 0.035161 6.178228033595178 1 2 18.534684100785533 pair\_coeff 1 5 wf/cut 0.171515 6.643964892255349 1 2 19.93189467676605 pair coeff 1 6 wf/cut 0.044522 5.868502140125925 1 2 17.605506420377775 pair coeff 1 7 wf/cut 0.073172 6.14145960937047 1 2 18.424378828111408 pair\_coeff 1 8 wf/cut 0.077577 6.318176525841784 1 2 18.95452957752535 pair coeff 1 9 wf/cut 0.229375 6.590037435016079 1 2 19.770112305048237 pair\_coeff 1 10 wf/cut 0.022571 6.320571545407576 1 2 18.96171463622273 pair\_coeff 1 11 wf/cut 0.025281 6.483443734640188 1 2 19.450331203920562 pair coeff 1 12 wf/cut 0.120006 6.36518785664648 1 2 19.09556356993944 pair coeff 1 13 wf/cut 0.294931 6.755728450520449 1 2 20.267185351561345 pair coeff 1 14 wf/cut 0.215603 6.538208522101147 1 2 19.61462556630344 pair coeff 1 15 wf/cut 0.050582 5.938940625510648 1 2 17.816821876531947 pair coeff 1 16 wf/cut 0.203491 6.392507281968151 1 2 19.177521845904455 pair\_coeff 1 17 wf/cut 0.116706 6.188018494610175 1 2 18.564055483830522 pair\_coeff 1 18 wf/cut 0.059120 6.1344640513130955 1 2 18.403392153939286 pair coeff 1 19 wf/cut 0.054437 6.094294827619396 1 2 18.282884482858186 pair coeff 1 20 wf/cut 0.019979 6.496393035701747 1 2 19.48917910710524 pair coeff 1 21 wf/cut 0.033511 6.472967463905089 1 2 19.418902391715267 pair coeff 1 22 wf/cut 0.053464 5.579884038976499 1 2 16.7396521169295 pair\_coeff 1 23 wf/cut 0.028840 6.572908139010548 1 2 19.718724417031645 pair\_coeff 1 24 wf/cut 0.030487 6.183085528083141 1 2 18.549256584249424 pair coeff 1 25 wf/cut 0.126057 6.646517494086263 1 2 19.93955248225879 pair\_coeff 1 26 wf/cut 0.037087 5.873266644604083 1 2 17.61979993381225 pair\_coeff 1 27 wf/cut 0.057192 6.145621669676131 1 2 18.43686500902839 pair\_coeff 1 28 wf/cut 0.060220 6.322430858089529 1 2 18.967292574268587 pair\_coeff 1 29 wf/cut 0.166559 6.592040039094211 1 2 19.776120117282634 pair\_coeff 1 30 wf/cut 0.022157 6.322886509244067 1 2 18.9686595277322 pair\_coeff 1 31 wf/cut 0.023649 6.486360198534797 1 2 19.45908059560439 pair coeff 1 32 wf/cut 0.089698 6.368425539955892 1 2 19.105276619867674 pair coeff 1 33 wf/cut 0.212282 6.7573688868401405 1 2 20.27210666052042 pair coeff 1 34 wf/cut 0.156918 6.5402914181442595 1 2 19.620874254432778 pair\_coeff 1 35 wf/cut 0.041217 5.943583554201671 1 2 17.830750662605013 pair\_coeff 1 36 wf/cut 0.148384 6.394666170151445 1 2 19.183998510454334 pair\_coeff 1 37 wf/cut 0.087498 6.191219964195186 1 2 18.57365989258556 pair coeff 1 38 wf/cut 0.047275 6.139108925912469 1 2 18.417326777737408 pair coeff 1 39 wf/cut 0.043970 6.098946985727069 1 2 18.296840957181207 pair\_coeff 1 40 wf/cut 0.019979 6.496393035701747 1 2 19.48917910710524 pair coeff 2 2 wf/cut 0.096470 4.695110240398406 1 2 14.085330721195216 pair\_coeff 2 3 wf/cut 0.061139 5.671338290828199 1 2 17.014014872484598


### LAMMPS parameter file: Force field information

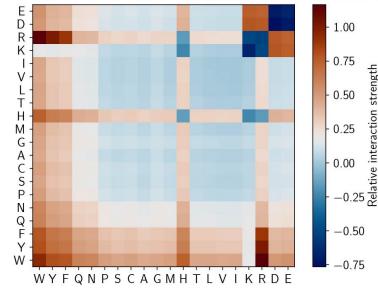
K25 MAEPR QEFEV MEDHA GTYGL GDRKD QGGYT MHQDQ EGDTD AGLKA EEAGI GDTPS LEDEA AGHVT QARMV SKSKD GTGSD DKKAK GADGK TKIAT PRGAA PPGQK GQANA TRIPA KTPPA PKTPP SSGEP PKSGD RSGYS SPGSP GTPGS RSRTP SLPTP PTREP KKVAV VRTPP KSPSS AKSRL

6

bond\_coeff 1 9.600 3.81 pair\_style hybrid/overlay wf/cut 25.0 coul/debye 0.131 0.0

pair\_coeff 1 1 wf/cut 0.039564 6.467950871367303 1 2 19.403852614101908
pair\_coeff 1 2 wf/cut 0.068017 5.576178403526399 1 2 16.728535210579196
pair\_coeff 1 3 wf/cut 0.032686 6.5677835361737795 1 2 19.70335060852134
pair\_coeff 1 4 wf/cut 0.035161 6.178228033595178 1 2 18.534684100785533
pair\_coeff 1 5 wf/cut 0.171515 6.643964892255349 1 2 19.93189467676605
pair\_coeff 1 6 wf/cut 0.044522 5.868502140125925 1 2 17.60550642037775




pair\_coeff 1 34 wf/cut 0.156918 6.5402914181442595 1 2 19.620874254432778
pair\_coeff 1 35 wf/cut 0.041217 5.943583554201671 1 2 17.830750662605013
pair\_coeff 1 36 wf/cut 0.148384 6.394666170151445 1 2 19.183998510454334
pair\_coeff 1 37 wf/cut 0.087498 6.191219964195186 1 2 18.57365989258556
pair\_coeff 1 38 wf/cut 0.047275 6.139108925912469 1 2 18.417326777737408
pair\_coeff 1 39 wf/cut 0.043970 6.098946985727069 1 2 18.296840957181207
pair\_coeff 1 40 wf/cut 0.019979 6.496310236701747 1 2 19.48917910710524
pair\_coeff 2 2 wf/cut 0.096470 4.695110240398406 1 2 14.085330721195216
pair\_coeff 2 3 wf/cut 0.061139 5.671338290828199 1 2 17.014014872484598

### LAMMPS parameter file: Timestep, thermostat etc

MAEPR QEFEV MEDHA GTYGL GDRKD QGGYT MHQDQ EGDTD AGLKA EEAGI GDTPS LEDEA AGHVT QARMV K25 SKSKD GTGSD DKKAK GADGK TKIAT PRGAA PPGQK GQANA TRIPA KTPPA PKTPP SSGEP PKSGD RSGYS SPGSP GTPGS RSRTP SLPTP PTREP KKVAV VRTPP KSPSS AKSRL

bond coeff 9.600 3.81 1 pair style hybrid/overlay wf/cut 25.0 coul/debye 0.131 0.0

pair\_coeff 1 1 wf/cut 0.039564 6.467950871367303 1 2 19.403852614101908 pair coeff 1 2 wf/cut 0.068017 5.576178403526399 1 2 16.728535210579196 pair\_coeff 1 3 wf/cut 0.032686 6.5677835361737795 1 2 19.70335060852134 pair\_coeff 1 4 wf/cut 0.035161 6.178228033595178 1 2 18.534684100785533 pair\_coeff 1 5 wf/cut 0.171515 6.643964892255349 1 2 19.93189467676605 pair coeff 1 6 wf/cut 0.044522 5.868502140125925 1 2 17.605506420377775



| neighbor 3.5<br>neigh_modify<br>comm_style | every 10 delay 0                                                                              |
|--------------------------------------------|-----------------------------------------------------------------------------------------------|
| timestep<br>timer timeout                  |                                                                                               |
| fix<br>fix<br>fix                          | fxnve all nve<br>fxlange all langevin 300 300 5000.0 32784<br>fxbal all balance 1000 1.05 rcb |
| dump<br>dump_modify                        | 1 all custom 1000000 result.lammpstrj id mol type q xu yu :<br>1 sort id                      |
| compute<br>fix                             | rad all gyration<br>fxrg all ave/time 100000 1 100000 c_rad file Rg.out                       |
|                                            | 1000<br>custom step pe press ke temp lx ly lz pzz spcpu density<br>flush yes                  |
|                                            |                                                                                               |

ΖI

pair\_coeff 1 34 wf/cut 0.156918 6.5402914181442595 1 2 19.620874254432778 pair\_coeff 1 35 wf/cut 0.041217 5.943583554201671 1 2 17.830750662605013 pair\_coeff 1 36 wf/cut 0.148384 6.394666170151445 1 2 19.183998510454334 pair\_coeff 1 37 wf/cut 0.087498 6.191219964195186 1 2 18.57365989258556 pair coeff 1 38 wf/cut 0.047275 6.139108925912469 1 2 18.417326777737408 pair coeff 1 39 wf/cut 0.043970 6.098946985727069 1 2 18.296840957181207 pair coeff 1 40 wf/cut 0.019979 6.496393035701747 1 2 19.48917910710524 pair\_coeff 2 2 wf/cut 0.096470 4.695110240398406 1 2 14.085330721195216 pair\_coeff 2 3 wf/cut 0.061139 5.671338290828199 1 2 17.014014872484598

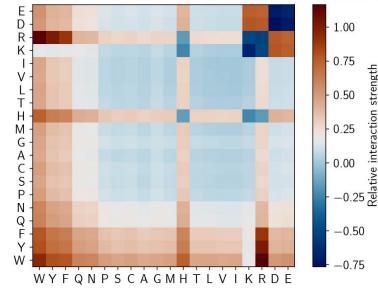
1000000 restart restart run 50000000

strength

interaction

### Simulation output file: Timestep vs Rg

MAEPR QEFEV MEDHA GTYGL GDRKD QGGYT MHQDQ EGDTD AGLKA EEAGI GDTPS LEDEA AGHVT QARMV K25 SKSKD GTGSD DKKAK GADGK TKIAT PRGAA PPGQK GQANA TRIPA KTPPA PKTPP SSGEP PKSGD RSGYS SPGSP GTPGS RSRTP SLPTP PTREP KKVAV VRTPP KSPSS AKSRL


9.600 bond coeff 1 3.81 pair style hybrid/overlay wf/cut 25.0 coul/debye 0.131 0.0

pair\_coeff 1 1 wf/cut 0.039564 6.467950871367303 1 2 19.403852614101908 pair\_coeff 1 2 wf/cut 0.068017 5.576178403526399 1 2 16.728535210579196 pair\_coeff 1 3 wf/cut 0.032686 6.5677835361737795 1 2 19.70335060852134 pair\_coeff 1 4 wf/cut 0.035161 6.178228033595178 1 2 18.534684100785533 pair\_coeff 1 5 wf/cut 0.171515 6.643964892255349 1 2 19.93189467676605 pair coeff 1 6 wf/cut 0.044522 5.868502140125925 1 2 17.605506420377775

strength

interaction

6



pair\_coeff 1 34 wf/cut 0.156918 6.5402914181442595 1 2 19.620874254432778 pair\_coeff 1 35 wf/cut 0.041217 5.943583554201671 1 2 17.830750662605013 pair\_coeff 1 36 wf/cut 0.148384 6.394666170151445 1 2 19.183998510454334 pair\_coeff 1 37 wf/cut 0.087498 6.191219964195186 1 2 18.57365989258556 pair coeff 1 38 wf/cut 0.047275 6.139108925912469 1 2 18.417326777737408 pair coeff 1 39 wf/cut 0.043970 6.098946985727069 1 2 18.296840957181207 pair\_coeff 1 40 wf/cut 0.019979 6.496393035701747 1 2 19.48917910710524 pair\_coeff 2 2 wf/cut 0.096470 4.695110240398406 1 2 14.085330721195216 pair\_coeff 2 3 wf/cut 0.061139 5.671338290828199 1 2 17.014014872484598

|               |                                                     | <pre># Time-averaged data for fix fxrg # TimeStep c_rad 0 227.435 100000 103.261</pre> |
|---------------|-----------------------------------------------------|----------------------------------------------------------------------------------------|
| neighbor 3.5  | multi                                               | 200000 70.631<br>300000 58.4836                                                        |
| neigh_modify  | every 10 delay 0                                    | 400000 70.6335                                                                         |
| comm_style    | tiled                                               | 500000 65.5933                                                                         |
|               |                                                     | 600000 40.7389                                                                         |
| timestep      | 10                                                  | 700000 43.1183                                                                         |
| timer timeout |                                                     | 800000 44.4325                                                                         |
| cimer cimeouc | 00.00.00                                            | 900000 38.9683                                                                         |
| fix           | fxnve all nve                                       | 1000000 41.2623                                                                        |
|               |                                                     | 1100000 53.8951                                                                        |
| fix           | fxlange all langevin 300 300 5000.0 32784           | 1200000 46.4552                                                                        |
| fix           | fxbal all balance 1000 1.05 rcb                     | 1300000 37.105                                                                         |
|               |                                                     | 1400000 32.7102                                                                        |
|               |                                                     | 1500000 25.8038                                                                        |
| dump          | 1 all custom 1000000 result.lammpstrj id mol type q | 1600000 29.7587                                                                        |
| dump_modify   | 1 sort id                                           | 1700000 55.647                                                                         |
| ,             |                                                     | 1800000 52.0732                                                                        |
| compute       | rad all gyration                                    | 1900000 59.1293                                                                        |
| fix           | fxrg all ave/time 100000 1 100000 c_rad file Rg.out | 2000000 34.186                                                                         |
| 117           | TAIN AIL AVE/CIME 100000 I 100000 C_IAU TITE RG.OUC |                                                                                        |
| 4 h           | 4000                                                | 2200000 31.4363                                                                        |
| thermo        | 1000                                                | 2300000 37.8167                                                                        |
|               | custom step pe press ke temp lx ly lz pzz spcpu der |                                                                                        |
| thermo_modify | flush yes                                           | 2500000 47.033                                                                         |
|               |                                                     | 2600000 45.6148                                                                        |
|               |                                                     | 2700000 45.4954                                                                        |
| estart 1      | 1000000 restart                                     | 2800000 34.2908                                                                        |
| run 500000000 |                                                     | 2900000 41.0021                                                                        |
|               |                                                     | 3000000 37.9041                                                                        |
|               |                                                     | 3100000 30.9629                                                                        |
|               |                                                     |                                                                                        |

Tutorial on MD Software by Nathaniel Hess (including introduction to LAMMPS)

https://drive.google.com/drive/folders/1XaKymQV4uPrjMCQr2crK HWvSGJsr0ZCH?usp=sharing