
Molecular Dynamics Simulations Demystified:
(Part I) Principles and Algorithms

Instructor: Jerelle Joseph
email: jerellejoseph@princeton.edu

Duke Center for Quantitative Living Systems April 2025

Contents

• Structure an MD simulation

• Representation of molecular systems

– Potential energy functions and force fields

• Newtonian equations of motion

• MD integrators

– Velocity Verlet algorithm

Overview of molecular dynamics
• Microscopic description of our system (e.g., atomistic model of a pro-
tein)

• Specify the conditions under which we want to study such system (i.e.,
statistical mechanical ensemble, T , p)

• Sample the system in the specified ensemble

– Propagate using equations of motion

– i.e., Generate configurations

• Compute properties of interest

– Thermodynamic average from stat. mech.: 〈X 〉 =
∫

X
(

rN
)

P
(

rN
)

drN

– Molecular dynamics estimation: 〈X 〉 = limt→∞

1

t

∫

t

0
X

(

rN (t)
)

dτ

Basic structure of an MD simulation program

Initialize system (positions, velocities)
Perform energy minimization/massaging

for each time increment:
 compute forces acting on particles
 compute new positions and velocities
 (apply any extra algorithms)
 (compute properties, write data)

compute properties, write data

Overall, molecular dynamics programs are quite simple:

Describing molecular systems:
Potential energy functions

• Let rN represent the set of atomic coordinates of a system

• U
(

r
N
)

= “potential energy function”

• U
(

r
N
)

describes how the potential energy of a system changes as a func-
tion of atomic coordinates

• U
(

r
N
)

is often factorized into contributions from bonded interactions (in-
tramolecular) and non-bonded interactions (intermolecular)

Potential energy functions and force fields

U(rN) = Ubonded(r
N) + Unon-bonded(r

N)

Ubonded(r
N) =

∑

ij,bonds

Ustretch (rij)+
∑

ijk,angles

Ubend (θijk)+
∑

ijkl,dihedrals

Utorsion (φijkl)

Unon-bonded(r
N) =

∑

ij,van der Waals

Uvdw (rij) +
∑

ij,electrostatics

Uel (rij)

Force field = functional forms of potential energy functions + the parameters
(equilibrium bond lengths, angles, partial charges, bond force constants)

Bonded potentials

Ubonded(r
N) =

∑

ij,bonds

Ustretch (rij)+
∑

ijk,angles

Ubend (θijk)+
∑

ijkl,dihedrals

Utorsion (φijkl)

1 2

1 3

4

1

Stretching term
1-2 interactions

Bending term
1-3 interactions Torsion/Twisting

term
1-4 interactions

Bonded potentials capture covalent intramolecular interactions. They are usu-
ally (at least in molecules) partitioned onto n-body terms up to n = 4:

Bonded potentials (Degrees of freedom)

Ubonded(r
N) =

∑

ij,bonds

Ustretch (rij)+
∑

ijk,angles

Ubend (θijk)+
∑

ijkl,dihedrals

Utorsion (φijkl)

Bonded potentials capture covalent intramolecular interactions. They are usu-
ally (at least in molecules) partitioned onto n-body terms up to n = 4:

Example functional form for stretch term

Ustretch (rij) =
1

2
kr (rij − r0)

2

• Bond stretching represents a ‘stiff degree of freedom’, responsible for
fastest vibrations at a femtosecond scale

• They are often modeled using Harmonic functions

• kr (bond force constant) and r0 (equilibrium bond length) are constants

• Many force fields use the similar potential energy functional forms, but
differ in their constants

Example functional form for van der Waals interactions

Unon-bonded(r
N) =

∑

ij,van der Waals

Uvdw (rij) +
∑

ij,electrostatics

Uel (rij)

• The van der Waals term attempts to capture non-charged non-bonded
interactions

• Lennard-Jones like potentials are often used for this purpose

Uvdw(rij) = ULJ(rij) = 4ε

[

]

σ

rij

)12

−

]

σ

rij

)6
]

Equations of motion: updating positions and velocities
• At the start of the simulation, we need to assign the initial positions

(e.g., from PDB structure) and velocities (e.g., from Maxwell–Boltzmann
distribution of speeds at target temperature)

• Then, given the current atomic positions, velocities and forces...

• We need to integrate equations of moton to find the next positions and

velocities over some finite time (δt aka timestep)

• Newtonian equations of motion are most commonly employed

• They are particularly convenient when working in Cartesian coordinates

• Newtonian: F = dp

dt
= m

d
2
r

dt2
= ma

• The force is taken as the negative gradient of the potential energy

• Force: F = −∇U(r) (i.e., conservative force)

MD Integrators: integrating equations of motion
• In its simplest, common manifestation, MD corresponds to a numerical
integration of Newton’s equations of motion

• Absent of other treatments, the configurations belong to the NVE

(microcanonical) ensemble

• MD integration schemes (aka integrators) should have certain desirable
properties

– minimal need to compute forces (a possibly expensive calculation)

– good stability and accuracy

– conserves energy and momentum

– time-reversible

MD Integrators: integrating equations of motion
• Most integration schemes are built by considering a Taylor expansion in
time from a given position

• For example, given the current position, the next atomic position can be
found via a Taylor expansion

r(t+ δt) = r(t) +
dr

dt
δt+

d
2r

dt2

δt
2

2
+O

(

δt
3
)

= r(t) + v(t)δt+
f(t)

2m
δt

2 +O
(

δt
3
)

• There are several reasonable schemes for integrating these equations of
motion (Verlet, Leapfrog, Velocity Verlet)

(1) Advance positions ri(t) by Taylor expansion from t to t+ δt :

ri(t+ δt) = ri(t) + δtvi(t) +
δt2

2mi

fi(t) +O
(

δt
3
)

(2) Derive the backward Taylor expansion from t+ δt to t :

ri(t) = ri(t+ δt)− δtvi(t+ δt) +
δt2

2mi

fi(t+ δt)−O
(

δt
3
)

(3) Add the backward expansion to the forward expansion:

ri(t+ δt) + ri(t) = ri(t) + ri(t+ δt)+

+ δt [vi(t)− vi(t+ δt)] +
δt2

2mi

[fi(t) + fi(t+ δt)]

Simplify & rearrange to obtain expression for advancing velocities:

vi(t+ δt) = vi(t) +
δt

2mi

[fi(t) + fi(t+ δt)] Velocity Verlet algorithm

The Integrator: Velocity Verlet algorithm

The Integrator: Velocity Verlet algorithm

r

v

f

t− δt t t+ δtt− 2δtr(t+ δt) = r(t) +
dr

dt
δt+

d
2
r

dt2

δt
2

2
+O

(

δt
3
)

=r(t) + v(t)δt+
f(t)

2m
δt

2 +O
(

δt
3
)

v(t+ δt) = v(t) +
f(t+ δt) + f(t)

2m
δt

Consider expansions in position and velocity:

At time t: r(t), v(t), f(t)

The Integrator: Velocity Verlet algorithm

r

v

f

t− δt t t+ δtt− 2δt

1. Update pos. to t+δt with current
pos., vels., & frcs.

2. Perform partial update to vels.
with current vels., frcs.

3. Compute new frcs. with new pos.

4. Complete velocity update

r(t+ δt) = r(t) + v(t)δt+
f(t)

2m
δt

2

v
∗(t+ δt) = v(t) +

f(t)

2m
δt

f(t+ δt) = −∇U
(

r
N (t+ δt)

)

v(t+ δt) = v
∗(t+ δt) +

f(t+ δt)

2m
δt

r(t+ δt) = r(t) +
dr

dt
δt+

d
2
r

dt2

δt
2

2
+O

(

δt
3
)

=r(t) + v(t)δt+
f(t)

2m
δt

2 +O
(

δt
3
)

v(t+ δt) = v(t) +
f(t+ δt) + f(t)

2m
δt

Consider expansions in position and velocity:

The Integrator: Velocity Verlet algorithm

r

v

f

t− δt t t+ δtt− 2δt

At time t: r(t), v(t), f(t)

1. Update pos. to t+δt with current
pos., vels., & frcs.

2. Perform partial update to vels.
with current vels., frcs.

3. Compute new frcs. with new pos.

4. Complete velocity update

r(t+ δt) = r(t) + v(t)δt+
f(t)

2m
δt

2

v
∗(t+ δt) = v(t) +

f(t)

2m
δt

f(t+ δt) = −∇U
(

r
N (t+ δt)

)

v(t+ δt) = v
∗(t+ δt) +

f(t+ δt)

2m
δt

r(t+ δt) = r(t) +
dr

dt
δt+

d
2
r

dt2

δt
2

2
+O

(

δt
3
)

=r(t) + v(t)δt+
f(t)

2m
δt

2 +O
(

δt
3
)

v(t+ δt) = v(t) +
f(t+ δt) + f(t)

2m
δt

Consider expansions in position and velocity:

The Integrator: Velocity Verlet algorithm

At time t: r(t), v(t), f(t)

1. Update pos. to t+δt with current
pos., vels., & frcs.

2. Perform partial update to vels.
with current vels., frcs.

3. Compute new frcs. with new pos.

4. Complete velocity update

r

v

f

t− δt t t+ δtt− 2δt

r(t+ δt) = r(t) + v(t)δt+
f(t)

2m
δt

2

v
∗(t+ δt) = v(t) +

f(t)

2m
δt

f(t+ δt) = −∇U
(

r
N (t+ δt)

)

v(t+ δt) = v
∗(t+ δt) +

f(t+ δt)

2m
δt

r(t+ δt) = r(t) +
dr

dt
δt+

d
2
r

dt2

δt
2

2
+O

(

δt
3
)

=r(t) + v(t)δt+
f(t)

2m
δt

2 +O
(

δt
3
)

v(t+ δt) = v(t) +
f(t+ δt) + f(t)

2m
δt

Consider expansions in position and velocity:

The Integrator: Velocity Verlet algorithm

r

v

f

t− δt t t+ δtt− 2δt

At time t: r(t), v(t), f(t)

1. Update pos. to t+δt with current
pos., vels., & frcs.

2. Perform partial update to vels.
with current vels., frcs.

3. Compute new frcs. with new pos.

4. Complete velocity update

r(t+ δt) = r(t) + v(t)δt+
f(t)

2m
δt

2

v
∗(t+ δt) = v(t) +

f(t)

2m
δt

f(t+ δt) = −∇U
(

r
N (t+ δt)

)

v(t+ δt) = v
∗(t+ δt) +

f(t+ δt)

2m
δt

r(t+ δt) = r(t) +
dr

dt
δt+

d
2
r

dt2

δt
2

2
+O

(

δt
3
)

=r(t) + v(t)δt+
f(t)

2m
δt

2 +O
(

δt
3
)

v(t+ δt) = v(t) +
f(t+ δt) + f(t)

2m
δt

Consider expansions in position and velocity:

