Duke Center for Quantitative Living Systems April 2025

Molecular Dynamics Simulations Demystified:
() Principles and Algorithms

Instructor: Jerelle Joseph
email: jerellejoseph@princeton.edu

Contents

Structure an MD simulation
Representation of molecular systems
— Potential energy functions and force fields
Newtonian equations of motion
MD integrators

— Velocity Verlet algorithm

Overview of molecular dynamics

Microscopic description of our system (e.g., atomistic model of a pro-
tein)

Specify the conditions under which we want to study such system (i.e.,
statistical mechanical ensemble, T, p)

Sample the system in the specified ensemble o8

— Propagate using equations of motion '&JE

— i.e., Generate configurations

Compute properties of interest

— Thermodynamic average from stat. mech.: (X) = [X (¢/V) P (£/) dr™

— Molecular dynamics estimation: (X) = lim; o 7 f(f X (rN(t)) dr

Basic structure of an MD simulation program

Overall, molecular dynamics programs are quite simple:

Initialize system (positions, velocities)

Perform energy minimization/massaging

for each time 1increment:
compute forces acting on particles
compute new positions and velocities
(apply any extra algorithms)

(compute properties, write data)

compute properties, write data

Describing molecular systems:
Potential energy functions

Let r™ represent the set of atomic coordinates of a system

U (rN) = “potential energy function”

U (rN) describes how the potential energy of a system changes as a func-
tion of atomic coordinates

U (rN) is often factorized into contributions from bonded interactions (in-
tramolecular) and non-bonded interactions (intermolecular)

Potential energy functions and force fields

U(rM) _lUbonded |—|—

non- bonded(N) |

Ubonded § Ustretch rzg + § Ubend zgk: E Utorsion (Cbijkl)

17,bonds 1jk,angles 1jkl,dihedrals

Unon—bonded (rN) — Z Uvdw (Tij) + Z Uel (7“@')

17, van der Waals 1j,electrostatics

Force field = functional forms of potential energy functions + the parameters
(equilibrium bond lengths, angles, partial charges, bond force constants)

Bonded potentials

Bonded potentials capture covalent intramolecular interactions. They are usu-
ally (at least in molecules) partitioned onto n-body terms up to n = 4:

Ubonded(rN) — Z Ustretch (Tij>‘|— Z Ubend (Q’ij)_'_ Z Utorsion (gbijkl)

1j,bonds 1jk,angles 1jkl,dihedrals
1 2
] 4

Stretching term

1-2 interactions 1 3

Bending term
1-3 interactions Torsion/Twisting
1 term

1-4 interactions

Bonded potentials (Degrees of freedom)

Bonded potentials capture covalent intramolecular interactions. They are usu-
ally (at least in molecules) partitioned onto n-body terms up to n = 4:

Ubonded(rN) — Z Ustretch (Tij>‘|— Z Ubend (Q’ij)_'_ Z Utorsion (gbijkl)

1j,bonds 1jk,angles 1jkl,dihedrals
i k
[| | \

Bonds Angles Dihedrals
DoF: bond distance DoF: angle between DoF: angle between

bond vectors* plane normals*
L L . r.. . rk- n..k . n.k/

rj = Iri — ;| cos Ojx = ——~ COS Pijkt = ———2
el el [| [0

NSRRI N

* Conventions may differ (rj - rij# rjj - rjcetc.)

Example functional form for stretch term ,

Harmonic bond
S

Fij

1

Ustretch (Tij) — §kr (Tz'j — 7“0)2

Bond stretching represents a ‘stiff degree of freedom’, responsible for
fastest vibrations at a femtosecond scale

They are often modeled using Harmonic functions
k. (bond force constant) and ry (equilibrium bond length) are constants

Many force fields use the similar potential energy functional forms, but
differ in their constants

Example functional form for van der Waals interactions
Unon—bonded(rN) — Z Uvdw (Tij) + Z Uel (Tij)
17,van der Waals 1j,electrostatics

e The van der Waals term attempts to capture non-charged non-bonded
interactions

e Lennard-Jones like potentials are often used for this purpose

Usaw (1) = Upy(ri;) = 4de [(;)12 N (;)6}

ULJ(r)

v

Equations of motion: updating positions and velocities

At the start of the simulation, we need to assign the initial positions
(e.g., from PDB structure) and velocities (e.g., from Maxwell-Boltzmann
distribution of speeds at target temperature)

Then, given the current atomic positions, velocities and forces...

We need to integrate equations of moton to find the next positions and
velocities over some finite time (¢ aka timestep)

Newtonian equations of motion are most commonly employed
They are particularly convenient when working in Cartesian coordinates

dp __ . d*r __
ar — Mgz —ma

Newtonian: F =
The force is taken as the negative gradient of the potential energy

Force: F = —VU(r) (i.e., conservative force)

MD Integrators: integrating equations of motion

e In its simplest, common manifestation, MD corresponds to a numerical
integration of Newton’s equations of motion

e Absent of other treatments, the configurations belong to the NVE
(microcanonical) ensemble

e MD integration schemes (aka integrators) should have certain desirable
properties

— minimal need to compute forces (a possibly expensive calculation)

ry =r"(tlrg’, po)

— good stability and accuracy

N _ . N N N
— conserves energy and momentum pr =p"(tlro. Po)

initial conditions

— time-reversible ===

! = r(elrl, —pl)

po =p"(tIry, —pl)

initial conditions

MD Integrators: integrating equations of motion

e Most integration schemes are built by considering a Taylor expansion in
time from a given position

e For example, given the current position, the next atomic position can be
found via a Taylor expansion

dr d’r 6t?
I‘(t -+ 575) — I'(t) -+ Eét + ﬁ?

=r(t) + v(t)ot + yéﬁ + O (6t°)

m

+ O (6t%)

e There are several reasonable schemes for integrating these equations of
motion (Verlet, Leapfrog, Velocity Verlet)

The Integrator: Velocity Verlet algorithm

(1) Advance positions r;(t) by Taylor expansion from ¢ to t + Jt :

2

r;(t+ 0t) =r;(t) + otv;(t) + 2&

m;

f;(t) + O (6t°)

(2) Derive the backward Taylor expansion from t + 6t to ¢ :

2

r;(t) =r;(t + 0t) — otv,;(t + ot) + 5;

f;(t + 6t) — O (5t°)

(3) Add the backward expansion to the forward expansion:

r;(t+ o0t) +r;(t) =r;(t) +r;(t + 6t)+

+ 6t [vi(t) — vi(t + 0t)] + (£ (t) + £ (t + 6t)]

Qmi

Simplify & rearrange to obtain expression for advancing velocities:

vi(t + 0t) = vi(t) + 2 [fi(t) + £;(t + 6t)] Velocity Verlet algorithm

sz'

The Integrator: Velocity Verlet algorithm

Consider expansions in position and velocity:
dr d*r 6t? 5 . B
r(t+0t) = (1) + — 0t + =5 —- + O (5t°) t—20t t—ot t t+ o0t
f
=r(t) + v(t)dt + 2(—25752 + O (5t°)
f(t + 6t) + £(t)
2m

v(t+d0t) =v(t) + ot

The Integrator: Velocity Verlet algorithm

Consider expansions in position and velocity:

dr d*r 6t? . B
r(t+0t) = (1) + — 0t + =5 —- + O (5t°) t—20t t—ot t t+ o0t

=r(t) + v(t)dt + 2(—25752 + O (6t%)
f(t+ 6t) + £(t)
2m

ot

v(t+dt) = v(t) +

At time t: r(t), v(t), f(¢)

1. Update pos. to t+dt with current
pos., vels., & frcs.

] [r(t +6t) = r(t) + v(t)ot + @5#]

2m

The Integrator: Velocity Verlet algorithm

Consider expansions in position and velocity:

2 2
r@+5w:r@y+%§w+%§%—+64&ﬂ t—20t t—ot t t+ ot
=r(t) + v(t)dt + 2(—25752 + O (5t°)

f(t+dt) + £(t)

t+o0t) = v(t ot
v(t 4+ dt) = v(t) + >

At time t: r(t), v(t), f(¢)
(1. Update pos. to t+dt with current 1 (B f(t) . b
| pos., vels., & frcs.) \r(t+5t) —r(t)+v(t)5t+%5t)
(2. Perform partial update to vels. || . B f(t) |
(with current vels., frcs. I vi(t+dt) = v(t) + %575)

The Integrator: Velocity Verlet algorithm

Consider expansions in position and velocity:

2 2
r@+5w:r@y+%ﬁw+%§%—+CW&ﬂ t—20t t—ot t t+ ot
=r(t) + v(t)dt + %&2 + O (5t°)

f(t+ ot) + £(¢)

t+0t) =v(t ot
Vit +ot) = v(t) + LD

At time t: r(t), v(t), f(¢)
(1. Update pos. to t+5t with current || B £(t) .)
| pos., vels., & frcs.) \I'(t—l—(;t) = r(t) + v(t)ot + %(%)
(2. Perform partial update to vels. || . B f(t)
(with current vels., frcs.)L vi(t+0t) = v(t) + %&)
(3. Compute new frcs. with new pos. 1(f(t—|—5t) — _VvU (I‘N(t—|—5t)))

- /L J

The Integrator: Velocity Verlet algorithm

Consider expansions in position and velocity:

dr d*r 6t? . B
r(t+0t) = (1) + — 0t + =5 —- + O (5t°) t—20t t—ot t t+ o0t

=r(t) + v(t)dt + g(t) 5t* + O (6t%)

m

£t +6t) + £(2)
t+0t) =v(t ot
Vit +at) = v(t) + 0
At time t: r(t), v(t), f(¢)
(1. Update pos. to t+dt with current 1 (B f(t) . 5)
| pos., vels., & frcs.) \r(t—i_(st) = r(t) + v(t)ot + %&)
(2. Perform partial update to vels. || . f(t) |
|\with current vels., frcs.)L vi(t+0t) = v(t) + %&)
(3. Compute new frcs. with new pos. 1 (f(t—|—5t) — VU (I‘N(t—|—5t)) |
(4. Complete velocity updat V[f(t+ot)_
omplete velocity update V(t+ 08) = v (t + 6t) + (2—|7;L)&

