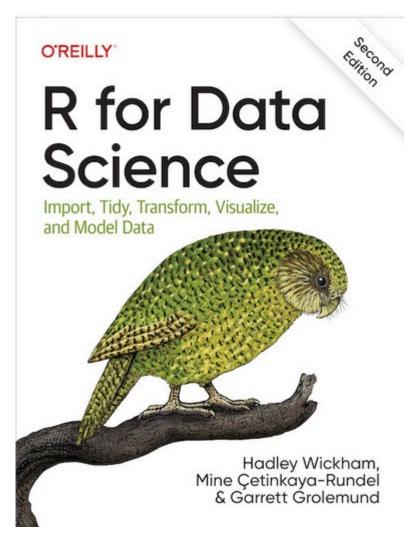
Data Tidying and Visualization

Justin Savage 11/6/24

Great Data Science Resources

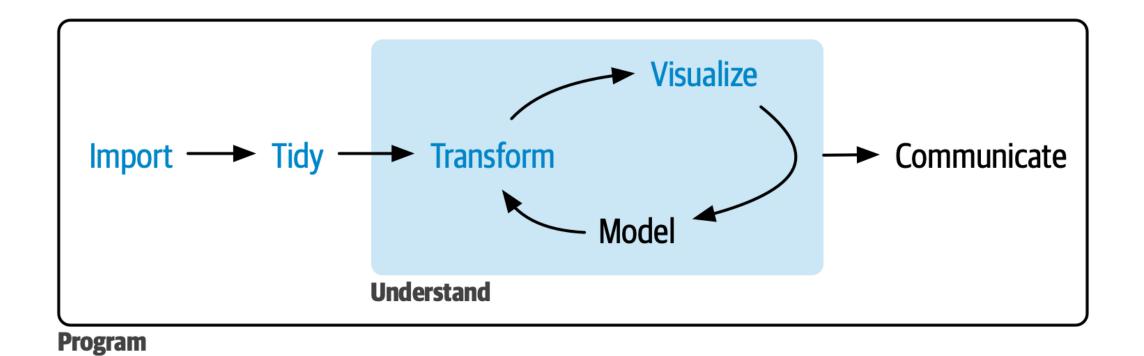


https://r4ds. hadley.nz/

https://jakevdp.githu b.io/PythonDataScie nceHandbook/

O'REILLY"

Data Analysis Workflow



Tabular Data

- Data in the form of a table or spreadsheet
- Includes:
 - Values specific measurements for a given variable
 - Observations a set of values that are related (i.e. from the same image)

Tabular data is commonly stored in R as a DataFrame object

 Before loading data, it is good practice to set up an R Markdown file and write out the experimental details

```
title: "20241105_vamp2_exc_puncta_analyzer"
author: "Justin Savage"
date: "`r Sys.Date()`"
output: pdf_document
 ```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
Goal: this analysis takes CSV file outputs from Puncta Analyzer analysis of synapse counts, combines these into a single data frame, with
necessary metadata, performs t-tests, and generates plots.
Experimental Question: Does astrocyte-specific knockout of the gene VAMP2 decrease VGlut1/PSD95 synapse number?
Experimental approach: LSL-Cas9 Mice were retro-orbitally injected with GEARBOCS AAV to knockout VAMP2 specifically in astrocytes. 6
```

animals were injected with a control virus that contained no CRISPR gRNA and 6 animals were injected with the "VAMP2 TRAP" virus to KO VAMP2. Animals were injected a postnatal day 21 and collected at P42.

### Datasets:

For each CSV file input, each row is measurements from a single Z-projection. Each 3 optical sections of the original 15 Z-stack images were max intensity projected to generate 5 of these Z-projections. 3 separate images were taken from different tissue sections of the the same animal. Images with "CONTROL" in the name received a control AAV while images with "VAMP2 TRAP" received an AAV to KO VAMP2.

- 1. "Vamp2 Vglut1 and Psd95.csv"
- 2. "Vamp2-Vglut1 Psd95-2.csv"
- "Vamp2-glut1-psd95-3.csv"

_ A		ВС	D	E	F	G	Н	1	J	K	L	М	N	0	P Q	R	S	Т	U	V	W	X	Υ	Z
1 Image name	. (	Condition Chann	el Num pur	ncArea aver	Min intens	Max inten	Mean inte																	
2 20231207_G	32_CON	V2 Vglut1 red cha	ann 1970	6 30.00405	73.58451	96.14676	81.80161	green cha	3946	12.91612	88.04156	131.1979	105.746	blue chan		-	-	-	colocalize	981	67.25433	80.25229	125.7712	96.53592
3 20231207_G	32_CON	V2 Vglut1 red cha	ann 2306	6 30.12489	77.65048	102.4428	86.76729	green cha	3415	12.14993	88.87701	130.9239	106.085	blue chan		-	-	-	colocalize	974	69.19713	82.83984	128.9528	99.45155
4 20231207_G	32_CON	V2 Vglut1 red cha	ann 196	3 21.80897	91.80183	117.1951	101.4527	green cha	3345	11.70404	89.93871	130.8858	106.7638	blue chan		-	-	-	colocalize	751	37.76698	90.42876	135.0226	107.1353
5 20231207_G	32_CON	V2 Vglut1 red cha	ann 252	7 23.58488	92.80807	119.4923	102.9062	green cha	3741	12.91981	87.81262	130.7982	105.4011	blue chan		-	-	-	colocalize	1032	44.8251	89.9094	138.2989	107.8344
6 20231207_G	32_CON	V2 Vglut1 red cha	ann 228:	1 22.35598	96.87812	124.8917	107.5235	green cha	4723	14.53081	89.93267	152.0809	117.6249	blue chan		-	-	-	colocalize	1191	39.66583	92.63938	150.3514	115.958
7 20231207_G	32_CON	V2 Vglut1 red cha	ann 210	5 27.39572	76.6228	99.57055	85.10742	green cha	3291	12.89335	97.28502	139.8107	116.565	blue chan		-	-	-	colocalize	741	73.39136	86.49393	131.5155	104.2445
8 20231207_G	32_CON	V2 Vglut1 red cha	ann 2490	0 31.74378	77.63414	103.0305	86.83781	green cha	4046	14.23381	84.65769	128.0494	102.8491	blue chan		-	-	-	colocalize	1073	77.9739	80.69385	129.3206	98.27053
9 20231207_G	32_CON	V2 Vglut1 red cha	ann 2378	8 28.77881	85.71026	112.7511	95.63347	green cha	3832	13.80428	85.59864	129.5467	104.0871	blue chan		-	-	-	colocalize	1062	68.47928	85.2693	134.9331	103.7332
10 20231207_G	32_CON	V2 Vglut1 red cha	ann 225	7 25.05051	92.87461	120.8387	103.3674	green cha	3979	15.02061	90.18874	143.6705	113.4465	blue chan		-	-	-	colocalize	1079	43.87535	91.07553	144.4727	112.1103
11 20231207_G	32_CON	V2 Vglut1 red cha	ann 220	7 22.45945	83.87404	111.0408	94.12937	green cha	4076	13.53312	94.70118	164.8236	127.3727	blue chan		-	-	-	colocalize	1090	33.54312	88.67615	147.5766	113.8368
12 20231207_G	32_CON	V2 Vglut1 red cha	ann 2012	2 27.18837	76.66352	100.8454	85.61569	green cha	3397	12.64822	106.7904	148.3559	127.2981	blue chan		-	-	-	colocalize	745	67.39262	91.3651	134.9423	109.5334
13 20231207_G	32_CON	V2 Vglut1 red cha	ann 2350	0 28.38681	77.67574	103.2183	87.01442	green cha	3764	13.00159	95.22848	140.5903	115.3202	blue chan		-	-	-	colocalize	948	95.4346	86.02426	135.4436	104.7654
14 20231207_G	32_CON	V2 Vglut1 red cha	ann 217:	1 26.4795	86.83141	113.7029	96.91419	green cha	3771	13.16256	94.28666	140.6675	114.4954	blue chan		-	-	-	colocalize	877	67.48005	89.97834	140.8974	109.6381
15 20231207_G	32_CON	V2 Vglut1 red cha	ann 281	5 31.02877	83.76092	111.8409	94.10443	green cha	3470	12.73343	97.47435	144.5323	118.2855	blue chan		-	-	-	colocalize	1078	102.6818	90.2449	142.6262	110.3149
16 20231207_G	32_CON	V2 Vglut1 red cha	ann 2289	9 24.58628	96.94495	125.7348	107.9361	green cha	3323	13.41168	104.8089	157.7707	129.4125	blue chan		-	-	-	colocalize	850	59.15588	100.3076	154.1859	122.8207
17 20231207_G	32_CON	V2 Vglut1 red cha	ann 2490	0 29.79277	81.76667	110.5133	92.4083	green cha	4571	14.37694	91.76504	140.4402	113.3175	blue chan		-	-	-	colocalize	1238	77.03675	86.23829	136.5202	106.1522
18 20231207_G	32_CON	V2 Vglut1 red cha	ann 2022	2 21.89862	95.0178	123.5208	106.1856	green cha	4885	14.70235	82.31013	132.7415	103.2103	blue chan		-	-	-	colocalize	1021	40.55387	87.98286	137.9216	107.5806
19 20231207_G	32_CON	V2 Vglut1 red cha	ann 246	4 22.44602	95.01664	123.6644	106.2164	green cha	3348	11.74044	95.94325	145.3011	117.5251	blue chan		-	-	-	colocalize	863	43.00521	94.88644	144.2677	114.9889
20 <b>20231207_G</b>	32_CON	V2 Vglut1 red cha	ann 2419	9 21.97106	101.0682	131.394	112.9485	green cha	3691	12.53427	90.7158	140.5733	112.0373	blue chan		-	-	-	colocalize	940	32.77872	95.32606	145.6319	115.4419
21 20231207_G	32_CON	V2 Vglut1 red cha	ann 258:	1 22.7408	104.9826	136.2115	117.3121	green cha	3984	14.02209	90.52385	144.5	113.5588	blue chan		-	-	-	colocalize	1096	35.53102	97.13458	150.5671	118.671
22 <b>20231207_</b> G	32_CON	V2 Vglut1 red cha	ann 276	7 25.56198	87.9082	119.5703	100.0213	green cha	3821	12.7375	99.02277	147.9275	121.2907	blue chan		-	-	-	colocalize	1089	40.95133	92.82782	143.8586	113.8806
23 <b>20231207_G</b>	32_CON	V2 Vglut1 red cha	ann 2308	8 21.01776	96.12565	127.4211	108.5589	green cha	3629	12.07936	96.05704	146.3582	118.4292	blue chan		-	-	-	colocalize	858	31.50583	95.54371	146.398	116.6679
24 20231207_G	32_CON	V2 Vglut1 red cha	ann 3090	0 24.75372	91.9356	123.8683	104.2437	green cha	3901	12.64958	91.79544	142.3238	113.3998	blue chan		-	-	-	colocalize	1244	39.18931	91.33802	143.1969	111.7976
25 <b>20231207_G</b>	32_CON	V2 Vglut1 red cha	ann 265	7 23.90064	101.1118	132.9116	113.7301	green cha	4000	13.256	88.5155	138.8013	109.8164	blue chan		-	-	-	colocalize	1179	40.57379	94.19678	145.8346	114.7743
26 <b>20231207_G</b>	32_CON	V2 Vglut1 red cha	ann 2324	4 20.58692	111.2169	141.7336	123.9173	green cha	3366	13.01456	94.53892	145.8099	116.757	blue chan		-	-	-	colocalize	775	35.45226	102.1935	153.4639	123.8633
27 <b>20231207_</b> G	32_CON	V2 Vglut1 red cha	ann 2570	6 26.76009	90.97943	122.9984	103.2508	green cha	4526	12.50663	101.3467	147.6684	123.0297	blue chan		-	-	-	colocalize	1361	70.96657	95.44967	144.8894	115.9664
28 <b>20231207_G</b>	32_CON	V2 Vglut1 red cha	ann 2700	6 25.30155	91.9963	123.912	104.2655	green cha	3097	10.31805	105.8389	152.7627	127.5166	blue chan		-	-	-	colocalize	934	43.92024	98.11777	148.8978	118.9338
29 <b>20231207_G</b>	32_CON	V2 Vglut1 red cha	ann 2082	2 19.19308	107.1724	138.3381	119.9697	green cha	2533	9.556652	107.7967	154.3439	129.3113	blue chan		-	-	-	colocalize	646	31.13003	106.8127	154.3011	127.2173
30 <b>20231207_</b> G	32_CON	V2 Vglut1 red cha	ann 263	5 22.97875	104.1309	136.8095	117.3413	green cha	3579	10.8779	93.86588	141.6384	114.2227	blue chan		-	-	-	colocalize	1040	39.75144	98.31154	149.2913	118.7153
31 20231207_G	32_CON	V2 Vglut1 red cha	ann 225	3 19.21172	119.4021	150.9783	133.1638	green cha	3655	11.79781	93.68974	145.4055	115.737	blue chan		-	-	-	colocalize	1010	28.42772	105.8906	155.5787	126.8967
32 <b>20231207_</b> G	32_CON	V2 Vglut1 red cha	ann 2342	2 24.13194	77.66311	100.6763	86.1595	green cha	3375	11.2797	75.08207	119.2797	93.11575	blue chan		-	-	-	colocalize	812	45.09052	75.79249	120.2414	91.84466
33 20231207_G	32_CON	V2 Vglut1 red cha	ann 2650	0 23.56302	81.71509	106.0721	90.8311	green cha	3602	11.64881	67.55552	108.3917	83.81298	blue chan		-	-	-	colocalize	952	42.22742	74.19538	118.8451	90.00967
34 20231207_G	32_CON	V2 Vglut1 red cha	ann 211	2 18.991	94.92945	120.1965	104.6958	green cha	3118	12.52213	69.49455	112.533	86.68235	blue chan		-	-	-	colocalize	686	32.54519	81.80466	127.777	98.58117
35 20231207_G	32_CON	V2 Vglut1 red cha	ann 2383	3 19.86068	94.94461	121.2707	105.0746	green cha	5081	16.08857	68.18303	138.3399	97.18363	blue chan		-	-	-	colocalize	1215	33.65885	80.90617	142.4868	104.6571
36 20231207_G	32_CON	V2 Vglut1 red cha	ann 201	5 21.0536	70.78462	93.45806	79.32324	green cha	3592	13.11442	86.58018	172.936	126.4422	blue chan		-	-	-	colocalize	938	30.72388	77.97548	141.662	106.0384
37 20231207_G	32_CON	V2 Vglut1   red cha	ann 2336	6 28.7256	62.53082	82.53896	69.7377	green cha	3606	11.67194	81.16084	125.8741	99.63486	blue chan		-	-	-	colocalize	807	90.57373	71.42379	116.5694	87.36234
< >	Vam	p2 Valut1 and Ps	:495													4								

```
35
36 · ```{r load data}

37
38 data_cleaned_1 <- read_csv("Vamp2 Vglut1 and Psd95.csv")
39 data_cleaned_2 <- read_csv("Vamp2-Vglut1 Psd95-2.csv")
40 data_cleaned_3 <- read_csv("Vamp2-glut1-psd95-3.csv")
41
```

### Tidy Data

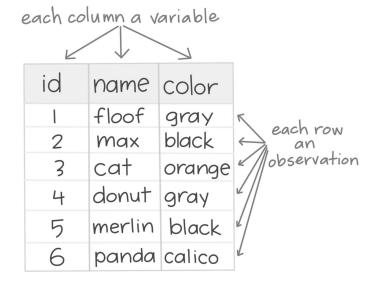


TIDY DATA is a standard way of mapping the meaning of a dataset to its structure.

-HADLEY WICKHAM

# In tidy data:

- each variable forms a column
- each observation forms a row
- each cell is a single measurement



Wickham, H. (2014). Tidy Data. Journal of Statistical Software 59 (10). DOI: 10.18637/jss.v059.i10

### Combining Data with rbind

1963 21.80897 91.80183 117.1951 101.4527 green cha

2527 23.58488 92.80807 119.4923 102.9062 green cha

2281 22.35598 96.87812 124.8917 107.5235 green cha

2105 27.39572 76.6228 99.57055 85.10742 green cha

2490 31.74378 77.63414 103.0305 86.83781 green cha

20231207\_GB2\_CON V2 Vglut1 red chann

20231207\_GB2\_CON V2 Vglut1 | red chann

20231207\_GB2\_CON V2 Vglut1 red chann

20231207\_GB2\_CON V2 Vglut1 (red chann

8 20231207\_GB2\_CON V2 Vglut1 red chann

```
35
36 * ```{r load data}

37
38 data_cleaned_1 <- read_csv("Vamp2 Vglut1 and Psd95.csv")
39 data_cleaned_2 <- read_csv("Vamp2-Vglut1 Psd95-2.csv")
40 data_cleaned_3 <- read_csv("Vamp2-glut1-psd95-3.csv")
41
42 data_combined <- rbind(data_cleaned_1, data_cleaned_2, data_cleaned_3)
```

Z	1 A	В	С	D	E	F	G	Н	1		K	L	М	N	0	Р	Q	R	S	T	U	V	W	Х	Υ	Z
1	Image name	Condition	n Channel N	Num pun	Area avera	Min intens	Max intens	Mean inte																		
2	20231207_GB2_	CON V2 Vglut	1 red chann	1976	30.00405	73.58451	96.14676	81.80161	green cha	3946	12.91612	88.04156	131.1979	105.746	blue chan -	-	-	-	-	-	colocalize	981	67.25433	80.25229	125.7712	96.53592
3	20231207_GB2_	CON V2 Vglut	1 red chann	2306	30.12489	77.65048	102.4428	86.76729	green cha	3415	12.14993	88.87701	130.9239	106.085	blue chan -		-	-	-	-	colocalize	974	69.19713	82.83984	128.9528	99.45155
4	20231207_GB2_	CON V2 Vglut	1 red chann	1963	21.80897	91.80183	117.1951	101.4527	green cha	3345	11.70404	89.93871	130.8858	106.7638	blue chan -	-	-	-	-	-	colocalize	751	37.76698	90.42876	135.0226	107.1353
5	20231207_GB2_	CON V2 Vglut	1 red chann	2527	23.58488	92.80807	119.4923	102.9062	green cha	3741	12.91981	87.81262	130.7982	105.4011	blue chan -	-	-	-	-	-	colocalize	1032	44.8251	89.9094	138.2989	107.8344
6	20231207_GB2_	CON V2 Vglut	1 red chann	2281	22.35598	96.87812	124.8917	107.5235	green cha	4723	14.53081	89.93267	152.0809	117.6249	blue chan -		-	-	-	-	colocalize	1191	39.66583	92.63938	150.3514	115.958
7	20231207_GB2_	CON V2 Vglut	1 red chann	2105	27.39572	76.6228	99.57055	85.10742	green cha	3291	12.89335	97.28502	139.8107	116.565	blue chan -	-	-	-	-	-	colocalize	741	73.39136	86.49393	131.5155	104.2445
8	20231207_GB2_	CON V2 Vglut	1 red chann	2490	31.74378	77.63414	103.0305	86.83781	green cha	4046	14.23381	84.65769	128.0494	102.8491	blue chan -		-	-	-	-	colocalize	1073	77.9739	80.69385	129.3206	98.27053
7	1 A	В	С	D	E	F	G	Н	1		K	L	М	N	0	Р	Q	R	S	Т	U	٧	w	Х	Υ	Z
1	Image name	Conditio	n Channel N	Num pun	Area avera	Min intens	Max intens	Mean inte																		
2	20231207_GB2_	CON V2 Vglut	1 red chann	1976	30.00405	73.58451	96.14676	81.80161	green cha	3946	12.91612	88.04156	131.1979	105.746	blue chan -	-	-	-	-	-	colocalize	981	67.25433	80.25229	125.7712	96.53592
3	20231207 GB2	CON V2 Vglut	1 red chann	2306	30.12489	77.65048	102.4428	86.76729	green cha	3415	12.14993	88.87701	130.9239	106.085	blue chan -		-	-	-	-	colocalize	974	69.19713	82.83984	128.9528	99.45155

3345 11.70404 89.93871 130.8858 106.7638 blue chan -

3741 12.91981 87.81262 130.7982 105.4011 blue chan -

4723 14.53081 89.93267 152.0809 117.6249 blue chan -

4046 14.23381 84.65769 128.0494 102.8491 blue chan-

116.565 blue chan -

3291 12.89335 97.28502 139.8107

colocalize

colocalize

colocalize

colocalize

colocalize

77.9739 80.69385 129.3206 98.27053

### Extract Columns of Interest

```
35
36 **``{r load data}

data_cleaned_1 <- read_csv("Vamp2 Vglut1 and Psd95.csv")

data_cleaned_2 <- read_csv("Vamp2-vglut1 Psd95-2.csv")

data_cleaned_3 <- read_csv("Vamp2-glut1-psd95-3.csv")

data_cleaned <- rbind(data_cleaned_1, data_cleaned_2, data_cleaned_3)

data_cleaned <- data_frame(data_combined$`Image name`)

data_cleaned$red_puncta_count <- data_combined$`Num puncta`

data_cleaned$green_puncta_count <- data_combined$...10

data_cleaned$coloc_puncta_count <- data_combined$...22

colnames(data_cleaned) <- c("Image", "red_puncta_count", "green_puncta_count", "coloc_puncta_count")
```

### Get condition from image name

```
``{r load data}
37
 data_cleaned_1 <- read_csv("Vamp2 Vglut1 and Psd95.csv")</pre>
 data_cleaned_2 <- read_csv("Vamp2-Vglut1 Psd95-2.csv")</pre>
 data_cleaned_3 <- read_csv("Vamp2-glut1-psd95-3.csv")</pre>
41
 data_combined <- rbind(data_cleaned_1, data_cleaned_2, data_cleaned_3)</pre>
43
 data_cleaned <- data.frame(data_combined$`Image name`)</pre>
 data_cleaned$red_puncta_count <- data_combined$`Num puncta`
 data_cleaned green_puncta_count <- data_combined $\ldots ... 10
 data_cleaned$coloc_puncta_count <- data_combined$...22
 colnames(data_cleaned) <- c("Image", "red_puncta_count", "green_puncta_count", "coloc_puncta_count")</pre>
 data cleaned condition <- "control"
53
 data_cleaned[which(grep1("*CONTROL*", data_cleaned$Image)),]$condition <- "control"</pre>
 data_cleaned[which(grep1("*VAMP2 TRAP*", data_cleaned$Image)),]$condition <- "Vamp2 Trap"
57
 data_cleaned$condition <- factor(data_cleaned$condition, levels = c("control", "Vamp2 Trap"))
```

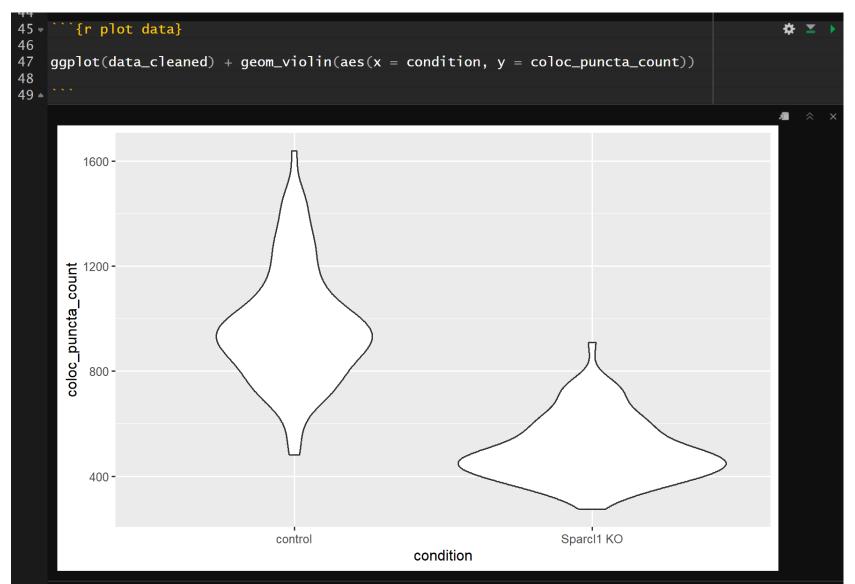
### Get condition from image name

```
``{r load data}
 data_cleaned_1 <- read_csv("Vamp2 Vglut1 and Psd95.csv")</pre>
 data_cleaned_2 <- read_csv("Vamp2-Vglut1 Psd95-2.csv")</pre>
 data_cleaned_3 <- read_csv("Vamp2-glut1-psd95-3.csv")</pre>
 each column a variable
41
 data_combined <- rbind(data_cleaned_1, data_cleaned_2, data_cleaned_3)</pre>
43
 data_cleaned <- data.frame(data_combined$`Image name`)</pre>
 name color
 id
 data_cleaned$red_puncta_count <- data_combined$`Num puncta`
 data_cleaned$green_puncta_count <- data_combined$...10</pre>
 floof
 gray
 each row
 data_cleaned$coloc_puncta_count <- data_combined$...22</pre>
 black
 max
 observation
 cat
 orange
 colnames(data_cleaned) <- c("Image", "red_puncta_count", "green_puncta_count" , "coloc_punct</pre>
 donut gray
 data_cleaned$condition <- "control"</pre>
 merlin black
53
 panda calico
 data_cleaned[which(grep1("*CONTROL*", data_cleaned$Image)),]$condition <- "control"</pre>
 data_cleaned[which(grepl("*VAMP2 TRAP*", data_cleaned$Image)),]$condition <- "Vamp2 Trap"
57
 data_cleaned$condition <- factor(data_cleaned$condition, levels = c("control", "Vamp2 Trap"))</pre>
```

### Simple plots with ggplot

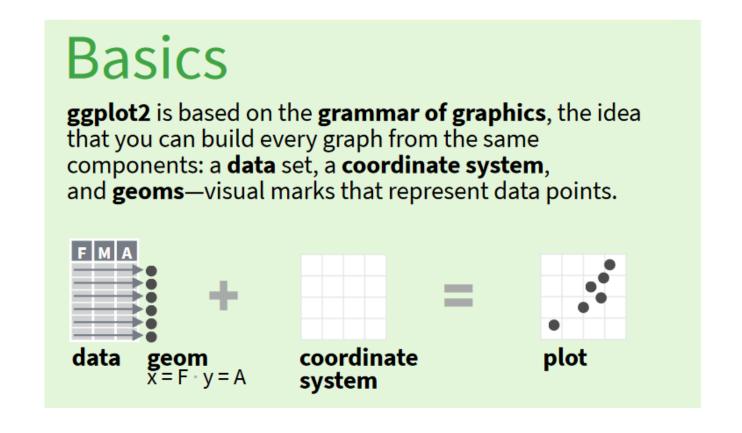
```
45 \ \tag{r plot data} \ \tag{ggplot(data_cleaned) + geom_violin(aes(x = condition, y = coloc_puncta_count))} \ \tag{48} \ \tag{49} \ \tag{49} \ \tag{49} \ \tag{49} \ \tag{49} \ \tag{40} \ \tag{40}
```

### Simple plots with ggplot



### Ggplot cheatsheet

• https://rstudio.github.io/cheatsheets/html/data-visualization.html



Use a geom function to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a layer.

ggplot2

### **GRAPHICAL PRIMITIVES**

a <- ggplot(economics, aes(date, unemploy))

b <- ggplot(seals, aes(x = long, y = lat))

a + geom\_blank() and a + expand\_limits() Ensure limits include values across all plots.

b + geom\_curve(aes(yend = lat + 1. xend = long + 1), curvature = 1) - x, xend, y, yend, alpha, angle, color, curvature, linetype, size

a + geom\_path(lineend = "butt", linejoin = "round", linemitre = 1) x, y, alpha, color, group, linetype, size

> a + geom\_polygon(aes(alpha = 50)) - x, y, alpha, color, fill, group, subgroup, linetype, size **b + geom\_rect(**aes(xmin = long, ymin = lat,

xmax = long + 1, ymax = lat + 1) - xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size

a + geom\_ribbon(aes(ymin = unemploy - 900, ymax = unemploy + 900)) - x, ymax, ymin, alpha, color, fill, group, linetype, size

### LINE SEGMENTS

common aesthetics: x, y, alpha, color, linetype, size



**b + geom\_segment(**aes(yend = lat + 1, xend = long + 1)) b + geom spoke(aes(angle = 1:1155, radius = 1))

### ONE VARIABLE continuous

c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

c + geom\_area(stat = "bin") x, y, alpha, color, fill, linetype, size

> c + geom\_density(kernel = "gaussian") x, y, alpha, color, fill, group, linetype, size, weight

c + geom dotplot() x, y, alpha, color, fill

> c + geom\_freqpoly() x, y, alpha, color, group, linetype, size

c + geom\_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight

c2 + geom\_qq(aes(sample = hwy)) x, y, alpha, color, fill, linetype, size, weight

### discrete

d <- ggplot(mpg, aes(fl))



d + geom\_bar() x, alpha, color, fill, linetype, size, weight

### TWO VARIABLES

### both continuous

e <- ggplot(mpg, aes(cty, hwy))



e + geom\_label(aes(label = cty), nudge\_x = 1, nudge\_y = 1) - x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

e + geom\_point() x, y, alpha, color, fill, shape, size, stroke

e + geom\_quantile()

x, y, alpha, color, group, linetype, size, weight

e + geom\_rug(sides = "bl") x, y, alpha, color, linetype, size

> e + geom smooth(method = lm) x, y, alpha, color, fill, group, linetype, size, weight

e + geom\_text(aes(label = cty), nudge\_x = 1, nudge\_y = 1) - x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

### one discrete, one continuous

f <- ggplot(mpg, aes(class, hwy))



### f + geom\_col()

x, y, alpha, color, fill, group, linetype, size

f + geom\_boxplot() x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight

> f + geom dotplot(binaxis = "y", stackdir = "center") x, y, alpha, color, fill, group



### f + geom\_violin(scale = "area")

x, y, alpha, color, fill, group, linetype, size, weight

### both discrete

g <- ggplot(diamonds, aes(cut, color))



### g + geom\_count()

x, y, alpha, color, fill, shape, size, stroke



### e + geom\_jitter(height = 2, width = 2)

x, y, alpha, color, fill, shape, size

### continuous bivariate distribution

h <- ggplot(diamonds, aes(carat, price))



 $h + geom\_bin2d(binwidth = c(0.25, 500))$ x, y, alpha, color, fill, linetype, size, weight



h + geom\_density\_2d()

x, y, alpha, color, group, linetype, size



h + geom hex()

x, y, alpha, color, fill, size

### continuous function

i <- ggplot(economics, aes(date, unemploy))</p>



### i + geom area()

x, y, alpha, color, fill, linetype, size



### i + geom\_line()

x, y, alpha, color, group, linetype, size



i + geom\_step(direction = "hv") x, y, alpha, color, group, linetype, size

### visualizing error

df < -data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)i <- ggplot(df, aes(grp, fit, ymin = fit - se, ymax = fit + se))</pre>



**j + geom\_crossbar**(fatten = 2) - x, y, ymax, ymin, alpha, color, fill, group, linetype, size

j + geom\_errorbar() - x, ymax, ymin, alpha, color, group, linetype, size, width Also geom\_errorbarh().



### j+geom linerange()

x, ymin, ymax, alpha, color, group, linetype, size



j + geom\_pointrange() - x, y, ymin, ymax, alpha, color, fill, group, linetype, shape, size

Draw the appropriate geometric object depending on the simple features present in the data. aes() arguments: map\_id, alpha, color, fill, linetype, linewidth.

nc <- sf::st\_read(system.file("shape/nc.shp", package = "sf"))

l + geom\_raster(aes(fill = z), hjust = 0.5,

vjust = 0.5, interpolate = FALSE)



ggplot(nc) + geom\_sf(aes(fill = AREA))

### THREE VARIABLES

seals\$z <- with(seals, sqrt(delta\_long^2 + delta\_lat^2)); l <- ggplot(seals, aes(long, lat))



x, y, z, alpha, color, group, linetype, size, weight

l + geom\_contour\_filled(aes(fill = z))



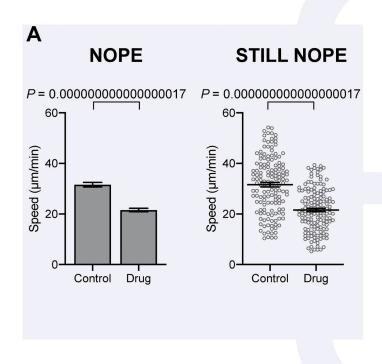
l + geom\_tile(aes(fill = z)) x, y, alpha, color, fill, linetype, size, width

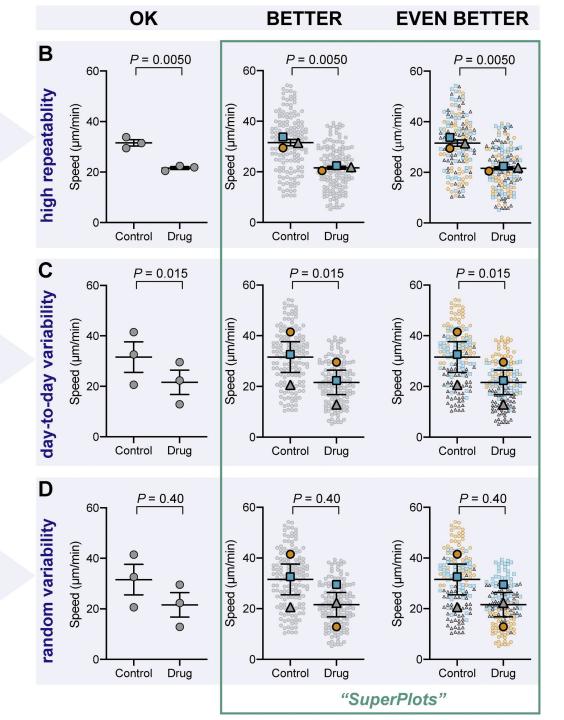
l + geom\_contour(aes(z = z))

x, y, alpha, color, fill, group, linetype, size, subgroup

### SuperPlots

 "We have written this tutorial to help cell biologists" plot data in a way that highlights both experimental robustness and cell-to-cell variability. Specifically, we propose the use of distribution—reproducibility "SuperPlots" that display the distribution of the entire dataset, and report statistics (such as means, error bars, and P values) that address the reproducibility of the findings."

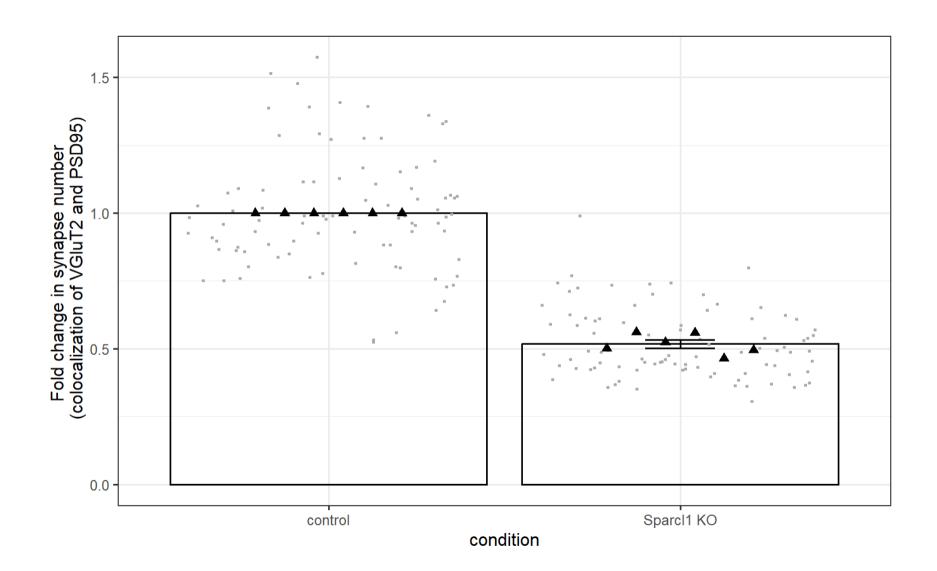




### Multicomponent plot

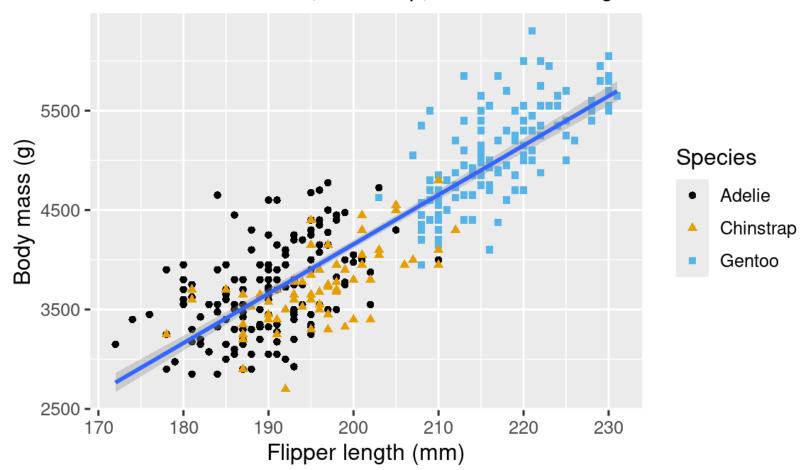
```
180
181 [r plot normalized synapse counts]
182
 plot.df <- summarize(group_by(data_cleaned, condition), mean(normalized_count))</pre>
 plot.df$sem <- 0</pre>
184
185
 plot.df$sem[which(grepl("control", plot.df$condition))] <- sem_wt</pre>
186
 plot.df$sem[which(grepl("Sparcl1 KO", plot.df$condition))] <- sem_ko</pre>
187
188
189
190
 ggplot(plot.df, aes(x = condition, y = `mean(normalized_count)`)) +
 geom_col(fill = NA, color = "black") +
191
 geom_jitter(data = data_cleaned, aes(x = condition, y = normalized_count), color = "darkgray",
192
 size = 0.5) +
 geom_point(data = norm_means, aes(x = condition, y = mean(normalized_count)), size = 2,
193
 position = position_dodge2(0.5), shape = 17) +
194
 #annotate("text", x = 1, y = 3, label = "p<0.001") +
 geom_errorbar(aes(ymin=`mean(normalized_count)`-sem, ymax=`mean(normalized_count)`+sem),
195
 width=.2) +
 labs(y = "Fold change in synapse number \n (colocalization of VGluT2 and PSD95)") +
196
197
 scale_color_manual(values = c("black", "black")) + theme(legend.position = "none") +
 theme_bw()
198
199
```

# Multicomponent plot



### Additional components

Body mass and flipper length Dimensions for Adelie, Chinstrap, and Gentoo Penguins



### Additional components

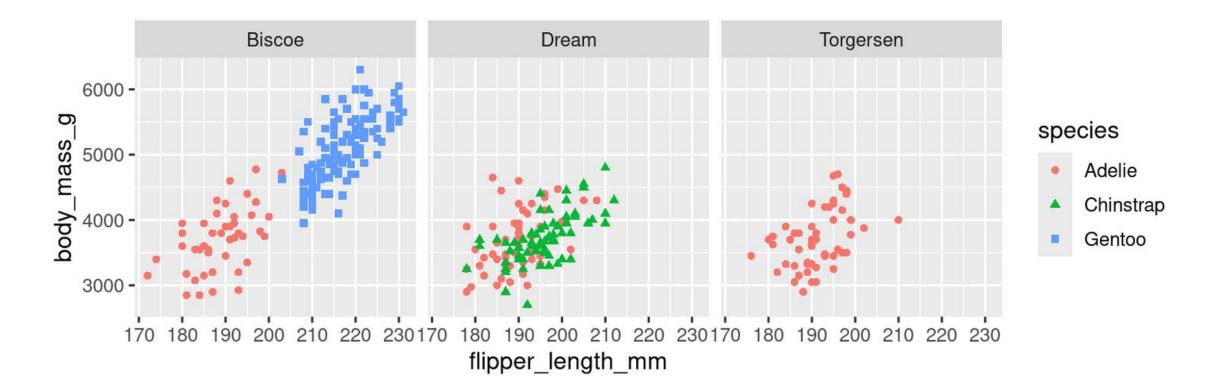
```
Body mass and flipper length
ggplot(
 Dimensions for Adelie, Chinstrap, and Gentoo Penguins
 data = penguins,
 5500
 mapping = aes(x = flipper_length_mm, y = body_mass_g)
 Body mass (g)
 Species

 Adelie

) +
 Chinstran
 geom_point(aes(color = species, shape = species)) +
 geom_smooth(method = "lm") +
 labs(
 title = "Body mass and flipper length",
 subtitle = "Dimensions for Adelie, Chinstrap, and Gentoo Penguins",
 x = "Flipper length (mm)", y = "Body mass (g)",
 color = "Species", shape = "Species"
 scale_color_colorblind()
```

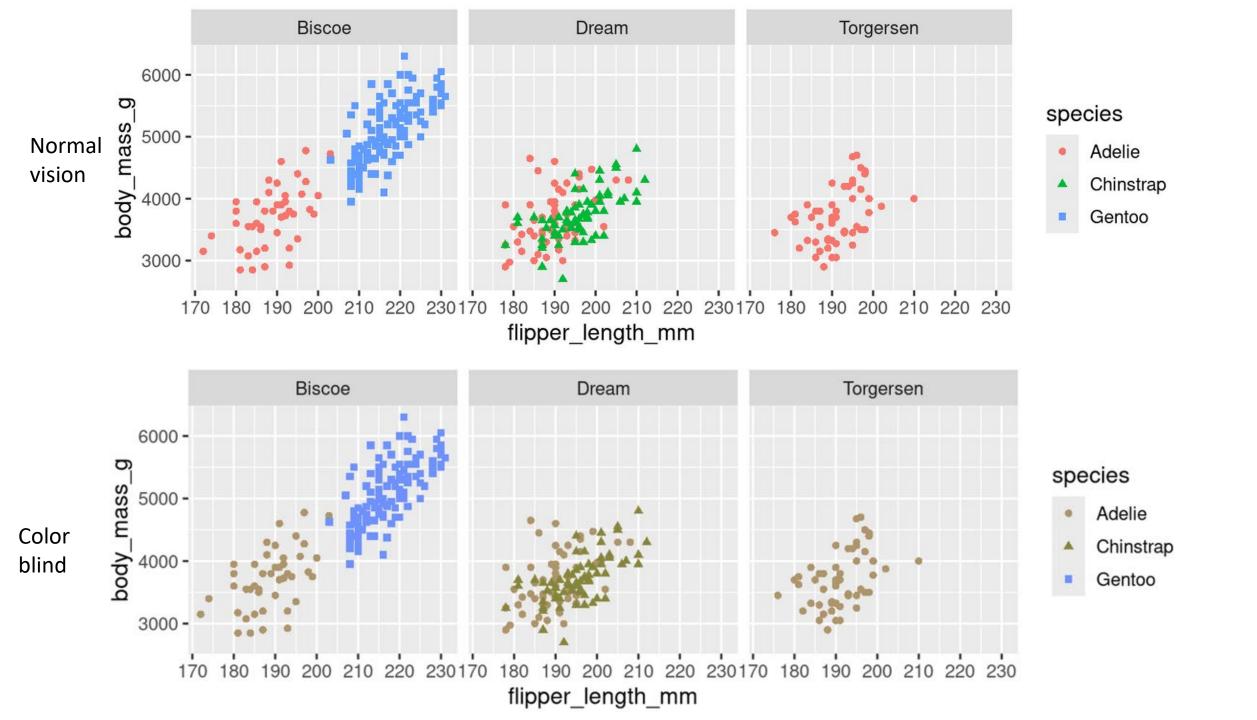
### Facet wrap

```
ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +
 geom_point(aes(color = species, shape = species)) +
 facet_wrap(~island)
```

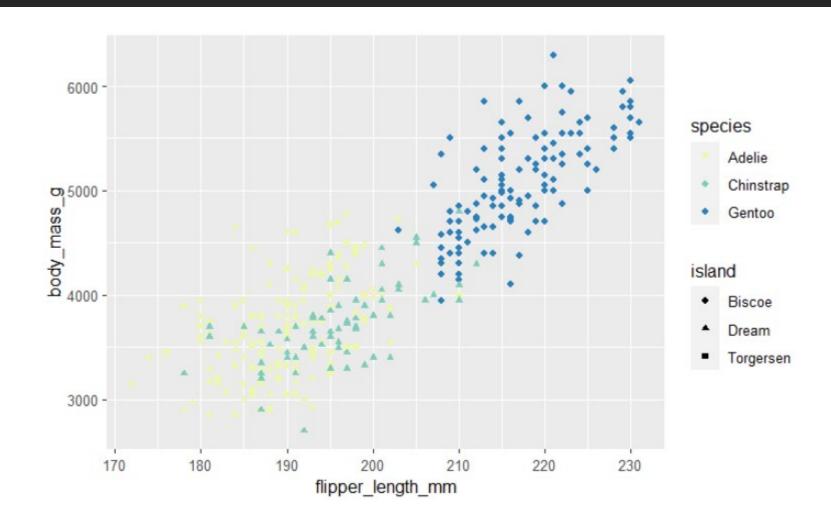


### Accessible Color Palletes

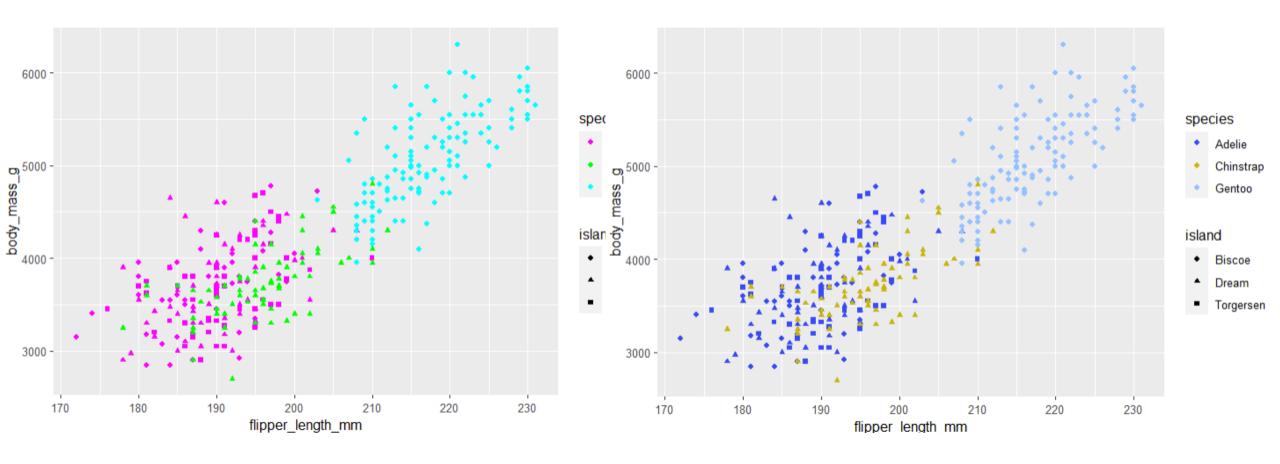
- Colorblindness affects ~4% of people mostly through red-green color blindness
- To allow these people to view our figures, red-green discriminations should be avoided
- Many packages are changing their default packages to be more colorblind accessible. Viridis and YlGnBu are good options.
- You can check how your image would appear to a person with color blindness using online apps like this one https://bioapps.byu.edu/colorblind image tester



```
ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +
 geom_point(aes(color = species, shape = island)) +
 scale_color_brewer(palette = "Viridis")
```



```
ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +
 geom_point(aes(color = species, shape = island)) + |
 scale_color_manual(values = c("magenta", "green", "cyan"))
```



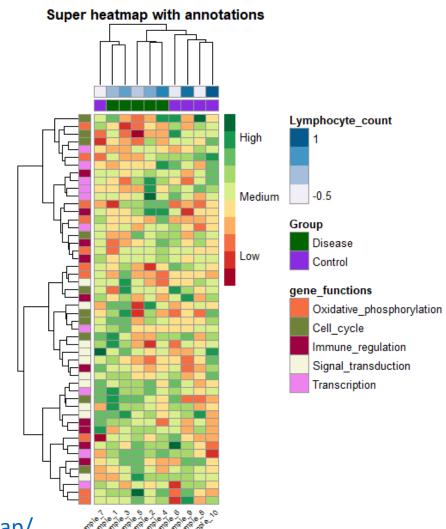
Normal vision Color blind

### Heatmaps

```
ggplot(data, aes(X, Y, fill= Z)) +
48
 geom_tile() +
 scale_fill_viridis(discrete=FALSE)
49
 var19 -
 var18 -
 var17 -
 var16 -
 var15
 var14 -
 var13 -
 var12 -
 var10 -
 var9
 var8
 var7 -
 var6
 var5
 var4 -
 var3 -
 var2 -
 var1 -
 L M N
```

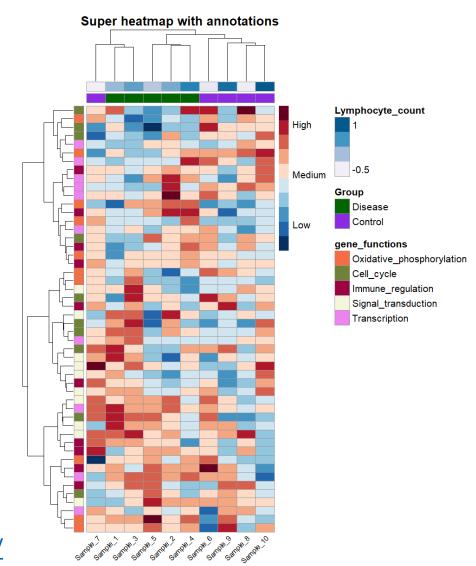
### Heatmaps for complex data with pheatmap

- Pheatmap can add clustering of your heatmap rows and columns
- Pheatmap makes additional annotations easier than ggplot



### Heatmaps for complex data with pheatmap

- Pheatmap can add clustering of your heatmap rows and columns
- Pheatmap makes additional annotations easier than ggplot



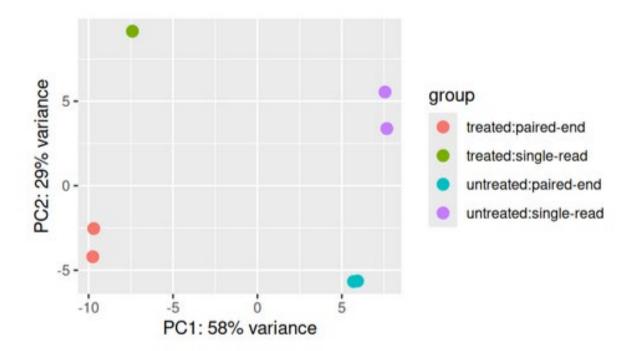
### Heatmaps for complex data with pheatmap

```
Super heatmap with annotations
62 # Base heatmap ======
 heat_plot <- pheatmap(data,</pre>
 col = rev(brewer.pal(10, 'RdBu')), # choose a colour scale for your data
 cluster_rows = T, cluster_cols = T, # set to FALSE if you want to remove the dendograms
 clustering_distance_cols = 'euclidean',
 clustering_distance_rows = 'euclidean',
 clustering_method = 'ward.D',
69
70
 annotation_row = gene_functions_df, # row (gene) annotations
 annotation_col = ann_df, # column (sample) annotations
 annotation_colors = ann_colors, # colours for your annotations
 annotation_names_row = F,
 annotation_names_col = F,
 fontsize_row = 10.
 fontsize_col = 7, # column label font size
 angle_col = 45, # sample names at an angle
 legend_breaks = c(-2, 0, 2), # legend customisation
 legend_labels = c("Low", "Medium", "High"), # legend customisation
 show_colnames = T, show_rownames = F, # displaying column and row names
 main = "Super heatmap with annotations") # a title for our heatmap
```

### Plots from analysis packages

DEseq2 plotPCA function

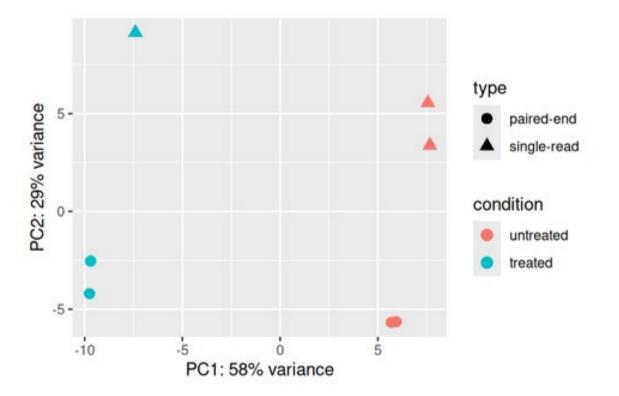
```
plotPCA(vsd, intgroup=c("condition", "type"))
```



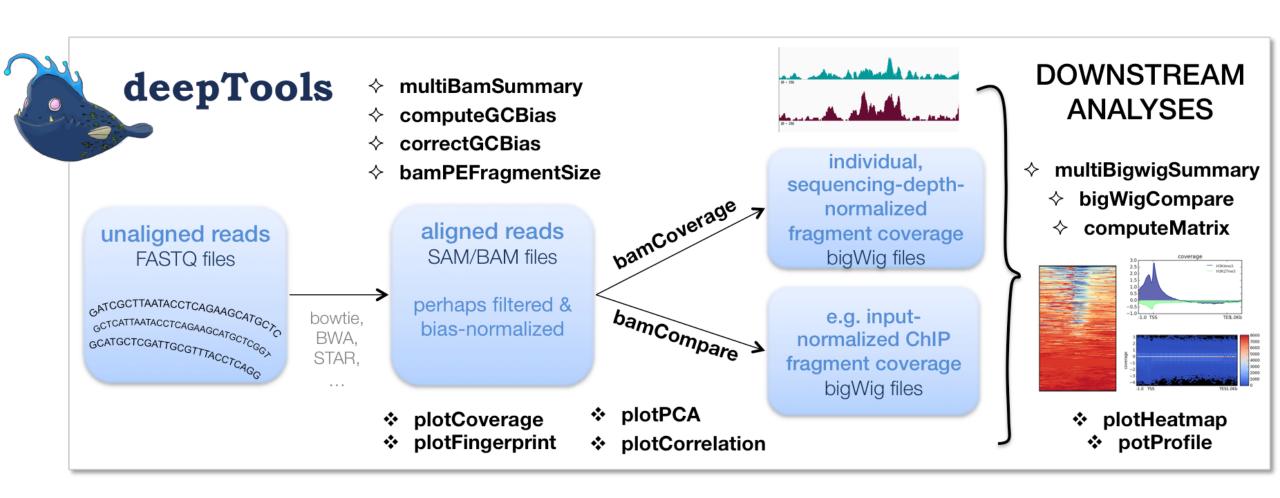
https://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

### DEseq2 PCA plot is compatible with ggplot

```
pcaData <- plotPCA(vsd, intgroup=c("condition", "type"), returnData=TRUE)
percentVar <- round(100 * attr(pcaData, "percentVar"))
ggplot(pcaData, aes(PC1, PC2, color=condition, shape=type)) +
 geom_point(size=3) +
 xlab(paste0("PC1: ",percentVar[1],"% variance")) +
 ylab(paste0("PC2: ",percentVar[2],"% variance")) +
 coord_fixed()</pre>
```



### Deeptools for region-based sequencing data



### Single cell RNAseq visualizations in Seurat

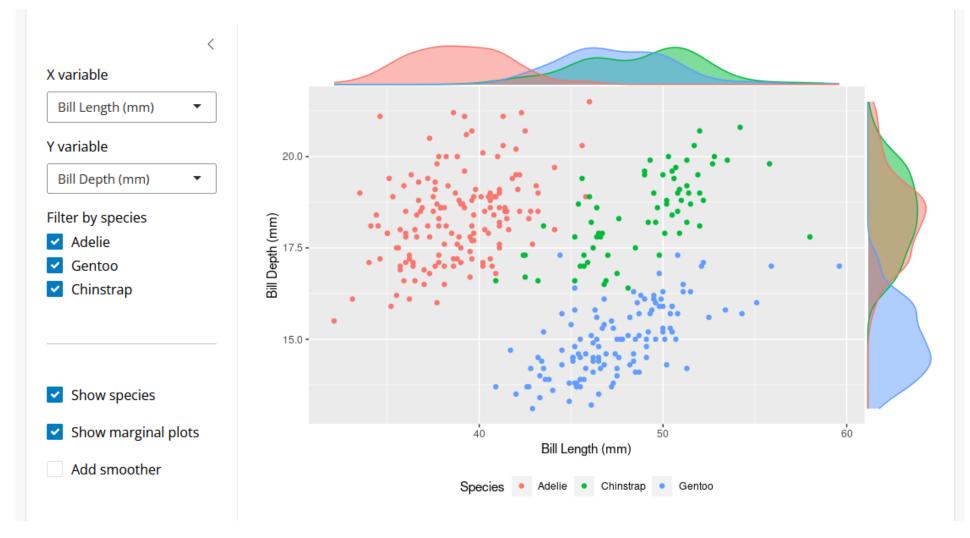
```
pbmc <- RunUMAP(pbmc, dims = 1:10)</pre>
note that you can set `label = TRUE` or use the LabelClusters function to help label
individual clusters
DimPlot(pbmc, reduction = "umap")
```

10

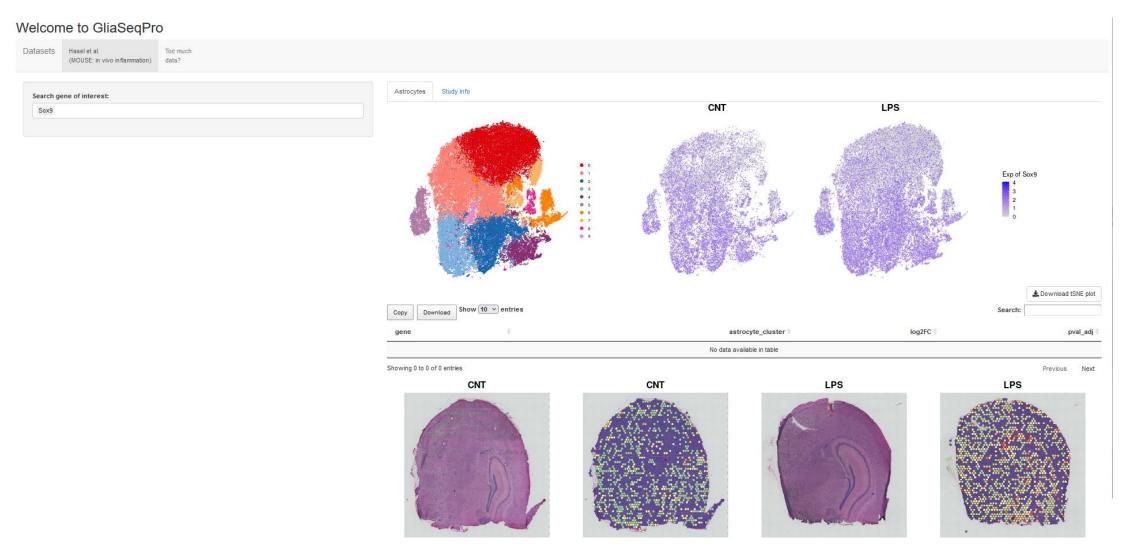
umap\_1

https://satijalab.org/seurat/articles/pbmc3k tutorial.html

### Shiny apps for interactive visualizations



### GliaSeqPro Shiny app example



https://liddelowlab.shinyapps.io/GliaSeqPro/

### Linking R plots to Adobe Illustrator

