
QLS Breakfast Seminar
11 September 2024

Rocky Diegmiller

Modeling Biological Systems
through Space and Time

Why bother modeling?

• To better understand the mechanics or biological interactions that
are driving observed behaviors

• To generate testable predictions based on outcomes of modeled
simulations or parameters (or to make predictions without having to
generate or test live animals)

• To identify common patterns or integrate ideas from other fields

Modeling and estimating rates of change

time

𝐶𝐶(𝑥𝑥) 𝐶𝐶(𝑥𝑥 + Δ𝑥𝑥)

𝐶𝐶(𝑡𝑡) 𝐶𝐶(𝑡𝑡 + Δ𝑡𝑡)

𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

= lim
Δ𝑥𝑥→0

𝐶𝐶 𝑥𝑥 + Δ𝑥𝑥 − 𝐶𝐶(𝑥𝑥)
Δ𝑥𝑥

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= lim
Δ𝑡𝑡→0

𝐶𝐶 𝑡𝑡 + Δ𝑡𝑡 − 𝐶𝐶(𝑡𝑡)
Δ𝑡𝑡

Δ𝐶𝐶
Δ𝑥𝑥

Δ𝐶𝐶
Δ𝑡𝑡=

𝐶𝐶 𝑥𝑥 + Δ𝑥𝑥 − 𝐶𝐶(𝑥𝑥)
Δ𝑥𝑥

=
𝐶𝐶 𝑡𝑡 + Δ𝑡𝑡 − 𝐶𝐶(𝑡𝑡)

Δ𝑡𝑡

Modeling and estimating rates of change

• Once we have a mathematical model to consider for our observed
data, we will need some way to interpret it or solve to find how the
prediction behaves in space, time, and with respect to other changes

• Luckily for us, MATLAB (and Python, Mathematica, and similar
programs) can numerically solve differential equations, even when
explicit solutions are hard or impossible

• There is also a rich amount of research that goes into both the theory
of differential equations, as well as the codes that help numerically
solve them with higher precision and greater efficiency

A simple example

• Consider the following ordinary differential equation (ODE):

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑥𝑥𝑥𝑥, 𝑦𝑦 0 = 2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑥𝑥𝑥𝑥 ⇒ �
1
𝑦𝑦
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 = �𝑥𝑥 𝑑𝑑𝑑𝑑 ⇒ ln 𝑦𝑦 =
1
2
𝑥𝑥2 + C

𝑦𝑦 0 = 2

⇒ 𝑦𝑦 = 𝐴𝐴𝐴𝐴𝐴
1
2
𝑥𝑥2

⇒ 2 = 𝐴𝐴𝐴𝐴𝐴
1
2

0 2 ⇒ 2 = 𝐴𝐴 ⇒ 𝑦𝑦 = 2exp
1
2
𝑥𝑥2

• This is a separable problem that we can explicitly solve:

MATLAB makes life easier

output of integration

independent variable dependent variable(s)
interval to solve over

system of equations for numerical integration initial/boundary
condition(s)

[x,y] = ode45(@(x,y) x*y, [0 3], 2);

MATLAB makes life easier

• ode45 (and other numerical solvers)
solves the ODE by selecting successive
points inside the interval and estimating
the value of the function at the new
selected point

• Said another way:
From initial point 𝑥𝑥0, pick new point 𝑥𝑥1

Use algorithm to estimate change in function, Δ𝑓𝑓

Add to previous known value, 𝑓𝑓(𝑥𝑥0), to get estimate of 𝑓𝑓(𝑥𝑥1)

Take 𝑥𝑥1,𝑓𝑓(𝑥𝑥1) as new values. Repeat until the end of the interval

A harder example

• Consider the ODE

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= sin 𝑥𝑥 + 𝑦𝑦 , 𝑦𝑦 0 = 𝜋𝜋

• This ODE has no explicit solutions (as far as I can tell…)

• Some clever math tricks (Wolfram Alpha) can get us to the implicit solution

tan 𝑥𝑥 + 𝑦𝑦 − sec 𝑥𝑥 + 𝑦𝑦 = 𝑥𝑥 + 1

• BUT! MATLAB is still perfectly happy to plot up a numerically-derived
solution to this problem

Once again, MATLAB makes life easier

output of integration

independent variable dependent variable(s)
interval to solve over

system of equations for numerical integration initial/boundary
condition(s)

[x,y] = ode45(@(x,y) sin(x+y), [0 4], pi);

Once again, MATLAB makes life easier

• As before, ode45 does a great job of
matching the solution of our ODE

• In fact, it seems to do an even better job
than implicitly plotting over the interval
with the MATLAB fimplicit function

Systems of ODEs

• Consider the system of ODEs

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 3𝑥𝑥 − 2𝑥𝑥𝑥𝑥, 𝑥𝑥 0 = 2

𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

= −𝑦𝑦 + 3𝑥𝑥𝑥𝑥, 𝑦𝑦 0 = 1

• This system is an example of a Lotka-Volterra system (predator-prey model)

• As we will see, systems with this form can produce oscillations

The streamslice function for visualizing systems of ODEs

• MATLAB also gives us the ability to view
the “flow” of a system of ODEs with the
streamslice function:

[X,Y] = meshgrid(0:0.1:3,0:0.1:6);
U = 3.*X-2.*X.*Y;
V = -Y+3.*X.*Y;

figure; box on; grid on;
streamslice(X,Y,U,V)

Numerically solving systems of ODEs

output of integration

independent variable

dependent variable(s) interval to solve over

system of equations for numerical integration
initial conditions

[t,y] = ode45(@(t,y) [3*y(1)-2*y(1)*y(2); -y(2)+3*y(1)*y(2)], [0 30], [2 1]);

𝑥𝑥 𝑦𝑦

Here, y is now a vector of values that MATLAB is trying to solve over: 𝑦𝑦 = 𝑦𝑦(1)
𝑦𝑦(2)

𝑥𝑥

𝑦𝑦

Numerically solving systems of ODEs

General systems of ODEs

• For a general system of ODEs

𝑑𝑑𝑦𝑦1
𝑑𝑑𝑡𝑡

= 𝑓𝑓1(𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛), 𝑦𝑦1 0 = 𝑦𝑦1,0

𝑑𝑑𝑦𝑦2
𝑑𝑑𝑡𝑡

= 𝑓𝑓2 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛 , 𝑦𝑦2 0 = 𝑦𝑦2,0

𝑑𝑑𝑦𝑦𝑛𝑛
𝑑𝑑𝑡𝑡

= 𝑓𝑓𝑛𝑛 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛 , 𝑦𝑦𝑛𝑛 0 = 𝑦𝑦𝑛𝑛,0

⋮⋮ ⋮

General systems of ODEs – matrix notation

• For a general system of ODEs

𝑑𝑑
𝑑𝑑𝑡𝑡

𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑛𝑛

=

𝑓𝑓1 𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑛𝑛
𝑓𝑓2 𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑛𝑛

⋮
𝑓𝑓𝑛𝑛 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛

, 𝑦𝑦0 =

𝑦𝑦1,0
𝑦𝑦2,0
⋮

𝑦𝑦𝑛𝑛,0

output of integration

independent variable dependent variables
(as vector)

interval to solve over

system of equations for numerical integration initial conditions
(as vector)

[t,y] = ode45(@(t,y) [f1;f2;…;fn], [t0 t1], y0);

General systems of ODEs

ASIDE: Phase space analysis

• Phase spaces (called phase planes in 2D)
are ways of visualizing characteristics of
dynamical systems

• Most often used when analyzing systems
in 2D, but can also be used to visualize
3D system behavior

• In 2D, they can identify fixed points,
limit cycles, saddle points, or
unbounded behavior (in 3D, can also
observe chaotic behavior)

ASIDE: Fixed point / steady state analysis

• Of particular interest for people modeling systems like these is the long-
term behavior of the components of the system

• In 2D, there are three options for the system:

• One or both components will tend to grow exponentially (unstable)

• Both components will tend to specific sets of values (stable)

• The components will take on the same values periodically (neutrally stable)

ASIDE: Fixed point / steady state analysis

• A system is said to be in steady state when the change in time of all
components of the system is zero

• The corresponding steady state values for each component of the system
can be found by setting the time derivatives of the system all to zero and
solving the corresponding algebraic equations

• From here, the stability of each fixed point (set of values at steady state)
can be classified as:

• unstable – trajectories tend to flow away from the point

• stable – trajectories tend to flow toward the point

• neutrally stable – trajectories tend to flow around the point (limit cycle)

ASIDE: Nullclines and trajectory analysis

• Another way to analyze how a system will behave is to consider the
nullclines – that is, the curve corresponding to where the change in that
component is zero (i.e., the component is not changing with time)

• To better appreciate this approach, consider the following cases:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0: • The value of 𝑥𝑥 will increase as time increases

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0: • The value of 𝑥𝑥 will decrease as time increases

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0: • The value of 𝑥𝑥 will not change as time increases

ASIDE: Nullclines and trajectory analysis

• Therefore, if we have the following system of two variables:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓 𝑥𝑥,𝑦𝑦 ,

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

= 𝑔𝑔 𝑥𝑥,𝑦𝑦 ,

𝑥𝑥 0 = 𝑥𝑥0

𝑦𝑦 0 = 𝑦𝑦0

• Then plotting the curves corresponding to 𝑓𝑓 𝑥𝑥,𝑦𝑦 = 0 and 𝑔𝑔 𝑥𝑥,𝑦𝑦 = 0 in
our phase plane will give us rough insights into how the system will be
predicted to behave

ASIDE: An example using phase plane analysis

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 2 − 𝑥𝑥 − 𝑦𝑦, 𝑥𝑥 0 = 2

𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

= 𝑥𝑥2 − 𝑦𝑦, 𝑦𝑦 0 = 0

• Let’s take a 2D example and think about what its phase plane tells us:

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 0 = 2 − 𝑥𝑥 − 𝑦𝑦,

𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

= 0 = 𝑥𝑥2 − 𝑦𝑦,

• First, let’s find the nullclines and then use streamslice to see the vector field

⇒ 𝑦𝑦 = −𝑥𝑥 + 2

⇒ 𝑦𝑦 = 𝑥𝑥2

ASIDE: An example using phase plane analysis

x = linspace(0,3,100);
y1 = 2-x;
y2 = x.^2;

figure; box on; grid on; hold on;
plot(x_1,y1,'b-','LineWidth',3)
plot(x_1,y2,'r-','LineWidth',3)

ASIDE: An example using phase plane analysis

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

> 0

⇒ 𝑦𝑦 < 2 − 𝑥𝑥

𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

> 0
⇒ 𝑦𝑦 < 𝑥𝑥2

⇒ 2 − 𝑥𝑥 − 𝑦𝑦 > 0

⇒ 𝑥𝑥2 − 𝑦𝑦 > 0

⇒ 𝑦𝑦 > 2 − 𝑥𝑥

⇒ 𝑦𝑦 > 𝑥𝑥2

ASIDE: An example using phase plane analysis

[X,Y] = meshgrid(0:0.25:3,0:0.25:3);
U = 2-X-Y;
V = X.^2-Y;

streamslice(X,Y,U,V)

Second order ODEs

• Consider the second order ODE

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑥𝑥 = 3, 𝑥𝑥 0 = 1, �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑡𝑡=0

= 0

• So far, we’ve only talked about solving systems where we only are taking
one derivative with respect to each variable being considered

• However, MATLAB can be persuaded to solve equations like this…

Tricking the computer into being clever

• Let 𝑦𝑦 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

=
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

• Then = 3 − 𝑥𝑥 − 2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 3 − 𝑥𝑥 − 2𝑦𝑦

• This trick produces a system of ODEs – something we know how to solve:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑦𝑦,

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

= 3 − 𝑥𝑥 − 2𝑦𝑦,

𝑥𝑥 0 = 1

𝑦𝑦 0 = 0

output of integration

independent variable dependent variables
(as vector)

interval to solve over

system of equations for numerical integration initial conditions
(as vector)

[t,y] = ode45(@(t,y) [y(2);3-y(1)-2*y(2)], [0 10], [1 0]);

Second order ODEs

Just as before…

• ode45 is doing all the heavy lifting for us
and matching the solution to the
original second order ODE

• This trick can be applied multiple times
to solve for any order ODE

General 𝑛𝑛𝑡𝑡𝑡 order ODEs

• Consider the general 𝑛𝑛𝑡𝑡𝑡 order ODE

𝑑𝑑𝑛𝑛𝑦𝑦1
𝑑𝑑𝑡𝑡𝑛𝑛

− 𝑓𝑓 𝑦𝑦1,
𝑑𝑑𝑦𝑦1
𝑑𝑑𝑡𝑡

, …
𝑑𝑑𝑛𝑛−1𝑦𝑦1
𝑑𝑑𝑡𝑡𝑛𝑛−1

= 0,

𝑦𝑦1 0 = 𝑦𝑦1,1

�
𝑑𝑑𝑦𝑦1
𝑑𝑑𝑑𝑑 𝑡𝑡=0

= 𝑦𝑦1,2

�
𝑑𝑑𝑛𝑛−1𝑦𝑦1
𝑑𝑑𝑡𝑡𝑛𝑛−1

𝑡𝑡=0

= 𝑦𝑦1,𝑛𝑛

⋮

Being clever once again

• Let 𝑦𝑦2 =
𝑑𝑑𝑦𝑦1
𝑑𝑑𝑑𝑑

,

𝑑𝑑𝑦𝑦𝑛𝑛
𝑑𝑑𝑑𝑑

=
𝑑𝑑2𝑦𝑦𝑛𝑛−1
𝑑𝑑𝑡𝑡2

• Then =
𝑑𝑑𝑛𝑛𝑦𝑦1
𝑑𝑑𝑡𝑡𝑛𝑛 = 𝑓𝑓 𝑦𝑦1,

𝑑𝑑𝑦𝑦1
𝑑𝑑𝑑𝑑

, …
𝑑𝑑𝑛𝑛−1𝑦𝑦1
𝑑𝑑𝑡𝑡𝑛𝑛−1

= 𝑓𝑓 𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, … ,𝑦𝑦𝑛𝑛

𝑦𝑦3 =
𝑑𝑑𝑦𝑦2
𝑑𝑑𝑑𝑑

, … ,𝑦𝑦𝑛𝑛 =
𝑑𝑑𝑦𝑦𝑛𝑛−1
𝑑𝑑𝑑𝑑

Being clever once again

𝑑𝑑𝑦𝑦1
𝑑𝑑𝑑𝑑

= 𝑦𝑦2,

𝑑𝑑𝑦𝑦𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝑓𝑓 𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, … ,𝑦𝑦𝑛𝑛

𝑑𝑑𝑦𝑦2
𝑑𝑑𝑑𝑑

= 𝑦𝑦3

⋮

𝑦𝑦1 0 = 𝑦𝑦1,1

𝑦𝑦2(0) = 𝑦𝑦1,2

𝑦𝑦𝑛𝑛(0) = 𝑦𝑦1,𝑛𝑛

⋮

output of integration

independent variable dependent variables
(as vector)

interval to solve over

system of equations for numerical integration initial conditions
(as vector)

[t,y] = ode45(@(t,y) [y(2); y(3); …; f], [t1 t2], y1);

General 𝑛𝑛𝑡𝑡𝑡 order ODEs

Stiffness and ODE solvers

• If your system of ODEs has multiple timescales or a lot of “problem points,”
you can run into poor or slow performance when numerically solving

• A “stiff equation” is one where numerical methods can become numerically
unstable unless the step size becomes very (sometimes arbitrarily) small

• This can lead to either rapidly growing error between the actual and
numerical solution or extremely slow stepping when determining a solution

Stiffness and ODE solvers

• Example – van der Pol oscillator:

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝑦𝑦, 𝑥𝑥 0 = 2

𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

= 𝜇𝜇 1 − 𝑥𝑥2 𝑦𝑦 − 𝑥𝑥, 𝑦𝑦 0 = 0

𝜇𝜇 = 10

Stiffness and ODE solvers

[t,y] = ode45(@(t,y) [y(2); mu*(1-y(1).^2).*y(2)-y(1)], [0 200], [2 0])

[t,y] = ode15s(@(t,y) [y(2); mu*(1-y(1).^2).*y(2)-y(1)], [0 200], [2 0])

Stiffness and ODE solvers

• As 𝜇𝜇 increases, the equation
becomes more stiff

• If we use ode15s (a stiff ODE
solver) rather than ode45, we find
that for larger values of 𝜇𝜇, our
system is solver much faster

Stiffness and ODE solvers

https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html

• Whenever you have a system of ODEs to solve, even MATLAB recommends
first using ode45 and switching only if it becomes clear that you need a stiff
equation solver

• In addition to ode15s, ode23s is a common stiff solver

• A full list (and when to use them) of ODE solvers in MATLAB can be found at:

https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html

Summary

• MATLAB is a great tool for numerically solving systems of ODEs

• Phase plane analysis can let us analyze the behavior of our system of ODEs
without having to solve the equation itself!

• A clever trick can let us solve ODEs of any order in MATLAB

• ode45 is a versatile numerical ODE solver, but if equations are stiff, ode15s
and ode23s are faster and tend to be more accurate

	Modeling Biological Systems through Space and Time
	Slide Number 2
	Slide Number 3
	Why bother modeling?
	Modeling and estimating rates of change
	Modeling and estimating rates of change
	A simple example
	MATLAB makes life easier
	MATLAB makes life easier
	A harder example
	Once again, MATLAB makes life easier
	Once again, MATLAB makes life easier
	Systems of ODEs
	The streamslice function for visualizing systems of ODEs
	Numerically solving systems of ODEs
	Numerically solving systems of ODEs
	General systems of ODEs
	General systems of ODEs – matrix notation
	Slide Number 19
	ASIDE: Phase space analysis
	ASIDE: Fixed point / steady state analysis
	ASIDE: Fixed point / steady state analysis
	ASIDE: Nullclines and trajectory analysis
	ASIDE: Nullclines and trajectory analysis
	ASIDE: An example using phase plane analysis
	ASIDE: An example using phase plane analysis
	ASIDE: An example using phase plane analysis
	ASIDE: An example using phase plane analysis
	Second order ODEs
	Tricking the computer into being clever
	Second order ODEs
	Just as before…
	General 𝑛 𝑡ℎ order ODEs
	Being clever once again
	Being clever once again
	General 𝑛 𝑡ℎ order ODEs
	Stiffness and ODE solvers
	Stiffness and ODE solvers
	Stiffness and ODE solvers
	Stiffness and ODE solvers
	Stiffness and ODE solvers
	Summary

