Modeling Reactive and
Diffusive Biological Systems

QLS Breakfast Seminar
25 September 2024

Rocky Diegmiller



cell polarization
PAR-2

oum

00:00

C. elegans embryo

waves of coordinated cell behavior

D. melanogaster embryo

00-00:00.000

75

appendage regeneration

4 dpp

osx: ErkKTB-mCerulean —

D. rerio scale

=
tn

log Erk activity (a.u.)

©
.

cell migration

Moesin

D. melanogaster egg chamber



Polarization of PAR Proteins Waves of Cdk1 Activity in S Phase Synchronize
by Advective Triggering the Cell Cycle in Drosophila Embryos

Victoria E. Deneke,’ M imo Vergassola, fano Di Talia’-*"
D - antar. Durham 0. USA

of a Pattern-Forming System ermen P

Nathan W. Goehring,* Philipp Khuc Trong,>** Justin S. Bois,>"t Debanjan Chowdhury,?t

Ernesto M. Nicola,’§ Anthony A. Hyman,” Stephan W. Grill%Y

of o°f a o
3 Dend—|— zo———=7of +&(X, 1)
ot x| Ky +a@° /

— L)ﬂ {:‘31 — E’_r( vA ) + ! ‘E\ oa 0°a

— ¥ DCdk‘ —ta+r+ [a f‘ fClX t‘.l — a] - !’—{fa. f‘ + Ec {X ” + -:r EX “
l:.‘t (:.‘XL X y . y J X y . y y

ac e

.--u,n' r — 7 —F — o :n . )
— ‘DP EZ‘;J‘} _ f-_'_r(""P_) + RP T Dcan;axglf +Ec(x, 1)

Science, 2011 Dev Cell, 2016

Modeling and analysis of collective cell migration in an

ittt whizn

“Molecular, Cellular and Developmental Biology, University of California Santa Barbara, CA 93106; "Department of Biological Ché € Johns Hopkins
https://doi.org/101038/s41586-020-03085-8  Alessandro De Simone'?, Maya N. Evanitsky'?, Luke Hayden'?, Ben D. Cox'*", Julia Wang'?, School of Medicine, Baltimore, MD 21205; “Department of Biological Sciences, Indian Institute of Science Education and Research RoTkata, West Bengal

hini*27, Jianhong oulﬁ Anna Chao'?, Kenneth D. Poss'*34= & Stefano Di Talia'25= 741252, India; and dDepartrnent of ghemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

dA
dt

= T L]:EE — ]-"'ga""‘l + [‘F:JI

ﬂ = ya(as £ —1) D. melanogaster egg chamber
dt Nature, 2021 PNAS, 2016




Modeling rates of change in space and time

|

I

I

I

I

. I
time |
ﬁ I
I

I

I

I

I

I

I

C(x,t) C(x+Ax,t) C(x,t +At) C(x + Ax,t + At)

dC(x,t) - C(x+Ax,t) — C(x,t) dC(x,t) - C(x,t+At) — C(x,t)
= lim = lim
O0x Ax—0 Ax dt At—0 At




Modeling rates of change in space and time

 Previously, we discussed how we can use MATLAB to numerically solve systems
of ODEs and ODEs of arbitrary order

« Now we are faced with the task of solving partial differential equations, where
more than one independent variable exists within the system

It may not come as a shock, but explicit solutions to PDEs are rare; in addition,
numerical schemes and programs need to be more careful to remain accurate

(and stable)



Finite differences for approximating derivatives

 Flashback to calculus — Taylor series expansion of a function about a point:

1 1
f) =fWo) + W)y —vyo) +§f”(3’0)(y — ¥0)? +gf”’(3’0)(y —Yo) + -+

* Now, pick y, = x and y = x + Ax (and truncate the series):
1
flx+Ax) = f(x) + f'(x)(Ax) + Ef”(X)(Ax)Z (*)
o Alternatively, we could pick y = x — Ax to get:

1
fle =A%) = f(x) = f'(x)(Ax) + = f () (Ax)* (*x)



Finite differences for approximating derivatives
« Truncating (x) before the '’ (x) term yields a first order approx. for f'(x):

fx +Ax) = f(x)
(Ax)

FO+A0) ~ £ + () (Ax) Sl ~

 Subtracting (*x) from (*) yields a second order approx. for f'(x):

flx+Ax) — f(x — Ax)
2(Ax)

flx+Ax) — f(x—Ax) = 2f " (x)(Ax) =|f'(x) =

 Similarly, adding (**) and (*) yields a second order approx. for "' (x):
fQx+Ax) + f(x — Ax) = 2f (x) + f" (x)(Ax)?

flx+Ax) —2f(x) + f(x — Ax)

S|F7(0)

(Ax)?




Random walks and the (1D) diffusion equation

t

Time t <} }

} }) Time t + At <} }



Random walks and the (1D) diffusion equation

 Consider a person at position x and time t + At

* To be here, they must have jumped from the left (x — Ax) or right (x + Ax) at time ¢

« Writing this in probabilistic terms (jumping occurs with equal prob.), we have:

1 |
P(x,t+At) = EP(x + Ax, t) + EP(x — Ax, t)

(Ax)?
(Ax)?

 Subtract P(x, t) from both sides and multiply the LHS by % and RHS by

= A

P(x,t + At) — P(x,t)  (Ax)? (P(x + Ax,t) — 2P(x,t) + P(x — Ax, t)
: At -T2 ( (Ax)? )



Random walks and the (1D) diffusion equation

 But the fractions on each side are just approx. of derivatives (for small At, Ax):
AtP(x, t +At) — P(x,t)  (Ax)? (P(x + Ax,t) — 2P(x,t) + P(x — Ax, t))

At 2 (Ax)?
0P (Ax)? [0°P
> — =
ot 2At \ dx?

 This prefactor can be redefined to give us a PDE describing diffusion:

- dx?

_(Ax)?> _ _(LENGTH)? N ap _ ) (62P>
T 2At TIME ot

( : in some contexts, D is called a« and the PDE is called the heat equation)



Reaction-Advection-Diffusion Equation in 1D

* Let the concentration of a chemical species at a point in time and space be u(x, t)

 In addition to diffusion, this species could undergo some sort of reaction R (u),
or it may also be affected by some external signal or induced flow (advection)
at rate c

» These two new behaviors can be integrated into our PDE to give us the more
generalized (1D) Reaction-Advection-Diffusion Equation:

au_DaZu+ au+R
gt - Poxz T T RW




Numerically solving (1D) PDEs in MATLAB

 Consider the 1D diffusion equation in the interval x € [0,1] :

u 92y ou ou 0, u(x,0) 10 ( (x — 0.5)2)
———D— =0 = — =0, u(x,0) = —exp| —

« These boundary conditions at the endpoints are called , as they
essentially act as barriers to stop material from escaping the domain

 The initial condition here is just a Gaussian profile centered in the middle of the
domain that will let us visualize diffusion at work over time



Numerically solving (1D) PDEs in MATLAB

 Time for some (not-so-helpful) notation from the MathWorks website:

. du\ou _ 0 i tau N . ou
c\obwar)ar =% | X\ pbug ) ts(xbi g

anSb, tiStStf

* We can match ¢, f, s to our PDE in the following way:

ot gz o T =P =0

0<x<1, 0<t<T



Numerically solving (1D) PDEs in MATLAB

* Boundary conditions are also written in an opaque way:

p(x,t,u) +qlx, t)f (x t,u,a—u> =0

0x
Ju

* We know our system has no-flux conditions at either end: EP

_6u

" 0x
x=0

» Plugging in for f at either endpoint lets us solve for p, g: *=1

du
p(0,t,u) + q(0,t) (D a) =0 p(0,t,u) =0 ¢q(0,t) =1
-

p(1,t,u) + q(1,t) (D Z—Z) =0 p(Lt,w)=0 q(1,t) =1



Coding it all up in MATLAB

« MATLAB has a cookie-cutter way of specifying all these conditions within three
separate functions that will be run nested inside the larger pdepe function:

ou 92u ou ou 0, w(x,0) 10 ( (x — 0.5)2)
e ) = — =0, u(x,0) =—exp|—
ot~ axz’  Ox[._, O0x| _, V21 0.02

ud = pdeic(x)
uo = 10/sqgrt(2*pi).*exp(-(x-0.5).72/0.02);
[c,f,s] = pdefun(x,t,u,dudx)
1.

= D;dUdX; [leqlJpP:qP] = pdEbC(Xl,Ul,XP,UP,t)
= 0; pl = 0;

ql = 1;

pr = 0;

ar = 1;



Coding it all up in MATLAB

 The only thing left to do is specify our points to solve on in space and time:

X = linspace(0,1,100);
t = linspace(9,2,100);

« Then, we can run our full function with ICs, BCs, and space and time frame:

This value tells the system what
l type of geometric symmetry to

employ (what coordinate system
are you running over):

sol = pdepe(9,@pdefun,@pdeic,@pdcbc, x t),
/ ® if rectangular

PDE function(s) t1me variaple 1 1f cylindrical

: . 2 if spherical
initial condltlons (discretized)

Space variable
boundary conditions (discretized)



Coding it all up in MATLAB

0.4 0.6 0.8
Location, x







turn PDEs into systems of ODEs

 For this approach, we will approximate space derivatives like we did earlier:

ou(x,t) u(x+Ax,t) —u(x—Ax,t)

0x 2At
%u(x,t)  ulx + Ax,t) — 2u(x,t) + u(x — Ax, t)
dx2 (Ax)?

« We need to now discretize space by splitting the interval [0,1] into N + 1 points
equally spaced Ax apart, which lets us write

pp= 91 ' fori=012 N
X = T xl—N,orl— 1,2, ...



turn PDEs into systems of ODEs

« If we only discretize in space (but not time), we can rewrite the PDE as:
du(x,t) 5 u(x + Ax,t) — 2u(x, t) + u(x — Ax, t)
ot (Ax)?

 Plugging in the space discretization gives us:

pp =01 L tori=012 N
X = T xl—N,orl— 1,2, ...

dU(Xi, t) U(Xl'+1, t) _ ZU(Xi, t) + U(xi_l, t)
= A D
dt (Ax)?



turn PDEs into systems of ODEs

 Using a shorthand notation for the space variable, we can write:

du; Ujpq — 2U; +Uj_q D 2D D
— =D 2 =z Yiv1 — u; +
dt (Ax) (Ax)?2 (Ax)?2 (Ax)?2

Ui—1

» Thus, we have a system of ODEs as follows:

dug D 2D D
dt  (Ax)2 1T (a2 0 T (ax)a
du, D 2D D

dt - A2 T Az ™ T (axz Yo

duy-, D 2D LD
At (A2 N7 (Ax)2 N1 ax)2 N2
duy D ZD )

At (A2 N+ T (a2 ™ T a2 M1



turn PDEs into systems of ODEs

 To take care of these terms, we need to consider our boundary conditions:
ou u
0x ~ Ox

dup OJduy

=% T TTax

x=0 x=1

e Let’s use our second order accurate definition of the derivative we found earlier:

duy U —U_q
~ = = U_1 = U

f(x + Ax) — f(x — Ax) 0x 2(Ax)
2(Ax)

f'() =

duy _UN+1 — Uy
dx 2(Ax)

=0 =|Unt+1 = Un—1




turn PDEs into systems of ODEs

« We can now substitute for our weird problem points u_;, uyq:

T Y

duy D 2p D

dt ~ ()2 2" (a)z 1T (axn)z
duy_y D 2D LD

dt  (Ax)2 N T (ax)2 N1 T (a2 N2
dt  (Bx)2 N T (Ax)z N1

» Because each of these equations specifies the sliding value of u over time for
each point in space, this approach is called the Method of Lines (MOL)



Method of Lines (MOL)

» All equations are linear in u;, so we can write them in matrix form:

\U:N/

2D 2D
/ (Ax)?2 (Ax)2

D 2D
(Ax)2  (Ax)?
0 D

o :

0

D

(Ax)?
2D

(Ax)?2  (Ax)?

2D
(Ax)?

2D
~ (Ax)?

/

(N+1)x (N + 1) matrix

\U:N/




Method of Lines (MOL)

n
X
delx
diff

5
1

=

i;space(e,l,n);
(x(end)-x(1))/(n-1);
9.05;

A = zeros(n,n);

= -2*diff/(delx”2);
diff/(delx”2);

diff/(delx”2);

A(1,2) = 2*diff/(delx"2);
A(end,end-1) = 2*diff/(delx”"2);



Method of Lines (MOL)

ud = 10/sqgrt(2*pi).*exp(-(x-0.5).72/0.02);

u = zeros(n,1);

['t,U] = (@(tJu) A*u, [9 1@])ue);
figure;
— i = 1:size(t,1)
N'=50 plot(x,u(:,1), »2)
Ax = 0.02 x1label( ) ;
ylabel( P b}
D = 0.05 title(strcat(

,hum2str(round(t(i),3)), )
axis([@ 1 @ 5])
ax=gca;
ax.FontSize = 20;
drawnow







Method of Lines (MOL)

0.4 0.6 0.8
Location, z







Comparison with MATLAB built-in PDE solver

0.4 0.6 0.8
Location, x

0.4 0.6
Location, x

Method of Lines (MOL) MATLAB pdepe




Summary

» As compared to ODEs, solving PDEs numerically can be much more
computationally expensive and mathematically painful

« Making some clever approximations for derivatives can enable numerical
approaches to remain accurate up to arbitrary order (at the expense of
computational cost)

« The Method of Lines is an alternative approach that effectively turns a PDE
into a system of ODEs that can be numerically solved using ode23s



	Modeling Reactive and Diffusive Biological Systems
	Slide Number 2
	Slide Number 3
	Modeling rates of change in space and time
	Slide Number 5
	Finite differences for approximating derivatives
	Finite differences for approximating derivatives
	Random walks and the (1D) diffusion equation
	Random walks and the (1D) diffusion equation
	Random walks and the (1D) diffusion equation
	Reaction-Advection-Diffusion Equation in 1D
	Numerically solving (1D) PDEs in MATLAB
	Numerically solving (1D) PDEs in MATLAB
	Numerically solving (1D) PDEs in MATLAB
	Coding it all up in MATLAB
	Coding it all up in MATLAB
	Coding it all up in MATLAB
	Alternative: turn PDEs into systems of ODEs
	Alternative: turn PDEs into systems of ODEs
	Alternative: turn PDEs into systems of ODEs
	Alternative: turn PDEs into systems of ODEs
	Alternative: turn PDEs into systems of ODEs
	Method of Lines (MOL)
	Method of Lines (MOL)
	Method of Lines (MOL)
	Method of Lines (MOL)
	Comparison with MATLAB built-in PDE solver
	Summary

