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Modeling rates of change in space and time
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Modeling rates of change in space and time

 Previously, we discussed how we can use MATLAB to numerically solve systems
of ODEs and ODEs of arbitrary order

« Now we are faced with the task of solving partial differential equations, where
more than one independent variable exists within the system

It may not come as a shock, but explicit solutions to PDEs are rare; in addition,
numerical schemes and programs need to be more careful to remain accurate

(and stable)



Finite differences for approximating derivatives

 Flashback to calculus — Taylor series expansion of a function about a point:

1 1
f) =fWo) + W)y —vyo) +§f”(3’0)(y — ¥0)? +gf”’(3’0)(y —Yo) + -+

* Now, pick y, = x and y = x + Ax (and truncate the series):
1
flx+Ax) = f(x) + f'(x)(Ax) + Ef”(X)(Ax)Z (*)
o Alternatively, we could pick y = x — Ax to get:

1
fle =A%) = f(x) = f'(x)(Ax) + = f () (Ax)* (*x)



Finite differences for approximating derivatives
« Truncating (x) before the '’ (x) term yields a first order approx. for f'(x):

fx +Ax) = f(x)
(Ax)

FO+A0) ~ £ + () (Ax) Sl ~

 Subtracting (*x) from (*) yields a second order approx. for f'(x):

flx+Ax) — f(x — Ax)
2(Ax)

flx+Ax) — f(x—Ax) = 2f " (x)(Ax) =|f'(x) =

 Similarly, adding (**) and (*) yields a second order approx. for "' (x):
fQx+Ax) + f(x — Ax) = 2f (x) + f" (x)(Ax)?

flx+Ax) —2f(x) + f(x — Ax)

S|F7(0)

(Ax)?




Random walks and the (1D) diffusion equation
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Random walks and the (1D) diffusion equation

 Consider a person at position x and time t + At

* To be here, they must have jumped from the left (x — Ax) or right (x + Ax) at time ¢

« Writing this in probabilistic terms (jumping occurs with equal prob.), we have:

1 |
P(x,t+At) = EP(x + Ax, t) + EP(x — Ax, t)

(Ax)?
(Ax)?

 Subtract P(x, t) from both sides and multiply the LHS by % and RHS by

= A

P(x,t + At) — P(x,t)  (Ax)? (P(x + Ax,t) — 2P(x,t) + P(x — Ax, t)
: At -T2 ( (Ax)? )



Random walks and the (1D) diffusion equation

 But the fractions on each side are just approx. of derivatives (for small At, Ax):
AtP(x, t +At) — P(x,t)  (Ax)? (P(x + Ax,t) — 2P(x,t) + P(x — Ax, t))

At 2 (Ax)?
0P (Ax)? [0°P
> — =
ot 2At \ dx?

 This prefactor can be redefined to give us a PDE describing diffusion:

- dx?

_(Ax)?> _ _(LENGTH)? N ap _ ) (62P>
T 2At TIME ot

( : in some contexts, D is called a« and the PDE is called the heat equation)



Reaction-Advection-Diffusion Equation in 1D

* Let the concentration of a chemical species at a point in time and space be u(x, t)

 In addition to diffusion, this species could undergo some sort of reaction R (u),
or it may also be affected by some external signal or induced flow (advection)
at rate c

» These two new behaviors can be integrated into our PDE to give us the more
generalized (1D) Reaction-Advection-Diffusion Equation:

au_DaZu+ au+R
gt - Poxz T T RW




Numerically solving (1D) PDEs in MATLAB

 Consider the 1D diffusion equation in the interval x € [0,1] :

u 92y ou ou 0, u(x,0) 10 ( (x — 0.5)2)
———D— =0 = — =0, u(x,0) = —exp| —

« These boundary conditions at the endpoints are called , as they
essentially act as barriers to stop material from escaping the domain

 The initial condition here is just a Gaussian profile centered in the middle of the
domain that will let us visualize diffusion at work over time



Numerically solving (1D) PDEs in MATLAB

 Time for some (not-so-helpful) notation from the MathWorks website:

. du\ou _ 0 i tau N . ou
c\obwar)ar =% | X\ pbug ) ts(xbi g

anSb, tiStStf

* We can match ¢, f, s to our PDE in the following way:

ot gz o T =P =0

0<x<1, 0<t<T



Numerically solving (1D) PDEs in MATLAB

* Boundary conditions are also written in an opaque way:

p(x,t,u) +qlx, t)f (x t,u,a—u> =0

0x
Ju

* We know our system has no-flux conditions at either end: EP

_6u

" 0x
x=0

» Plugging in for f at either endpoint lets us solve for p, g: *=1

du
p(0,t,u) + q(0,t) (D a) =0 p(0,t,u) =0 ¢q(0,t) =1
-

p(1,t,u) + q(1,t) (D Z—Z) =0 p(Lt,w)=0 q(1,t) =1



Coding it all up in MATLAB

« MATLAB has a cookie-cutter way of specifying all these conditions within three
separate functions that will be run nested inside the larger pdepe function:

ou 92u ou ou 0, w(x,0) 10 ( (x — 0.5)2)
e ) = — =0, u(x,0) =—exp|—
ot~ axz’  Ox[._, O0x| _, V21 0.02

ud = pdeic(x)
uo = 10/sqgrt(2*pi).*exp(-(x-0.5).72/0.02);
[c,f,s] = pdefun(x,t,u,dudx)
1.

= D;dUdX; [leqlJpP:qP] = pdEbC(Xl,Ul,XP,UP,t)
= 0; pl = 0;

ql = 1;

pr = 0;

ar = 1;



Coding it all up in MATLAB

 The only thing left to do is specify our points to solve on in space and time:

X = linspace(0,1,100);
t = linspace(9,2,100);

« Then, we can run our full function with ICs, BCs, and space and time frame:

This value tells the system what
l type of geometric symmetry to

employ (what coordinate system
are you running over):

sol = pdepe(9,@pdefun,@pdeic,@pdcbc, x t),
/ ® if rectangular

PDE function(s) t1me variaple 1 1f cylindrical

: . 2 if spherical
initial condltlons (discretized)

Space variable
boundary conditions (discretized)



Coding it all up in MATLAB
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turn PDEs into systems of ODEs

 For this approach, we will approximate space derivatives like we did earlier:

ou(x,t) u(x+Ax,t) —u(x—Ax,t)

0x 2At
%u(x,t)  ulx + Ax,t) — 2u(x,t) + u(x — Ax, t)
dx2 (Ax)?

« We need to now discretize space by splitting the interval [0,1] into N + 1 points
equally spaced Ax apart, which lets us write

pp= 91 ' fori=012 N
X = T xl—N,orl— 1,2, ...



turn PDEs into systems of ODEs

« If we only discretize in space (but not time), we can rewrite the PDE as:
du(x,t) 5 u(x + Ax,t) — 2u(x, t) + u(x — Ax, t)
ot (Ax)?

 Plugging in the space discretization gives us:

pp =01 L tori=012 N
X = T xl—N,orl— 1,2, ...

dU(Xi, t) U(Xl'+1, t) _ ZU(Xi, t) + U(xi_l, t)
= A D
dt (Ax)?



turn PDEs into systems of ODEs

 Using a shorthand notation for the space variable, we can write:

du; Ujpq — 2U; +Uj_q D 2D D
— =D 2 =z Yiv1 — u; +
dt (Ax) (Ax)?2 (Ax)?2 (Ax)?2

Ui—1

» Thus, we have a system of ODEs as follows:

dug D 2D D
dt  (Ax)2 1T (a2 0 T (ax)a
du, D 2D D

dt - A2 T Az ™ T (axz Yo

duy-, D 2D LD
At (A2 N7 (Ax)2 N1 ax)2 N2
duy D ZD )

At (A2 N+ T (a2 ™ T a2 M1



turn PDEs into systems of ODEs

 To take care of these terms, we need to consider our boundary conditions:
ou u
0x ~ Ox

dup OJduy

=% T TTax

x=0 x=1

e Let’s use our second order accurate definition of the derivative we found earlier:

duy U —U_q
~ = = U_1 = U

f(x + Ax) — f(x — Ax) 0x 2(Ax)
2(Ax)

f'() =

duy _UN+1 — Uy
dx 2(Ax)

=0 =|Unt+1 = Un—1




turn PDEs into systems of ODEs

« We can now substitute for our weird problem points u_;, uyq:

T Y

duy D 2p D

dt ~ ()2 2" (a)z 1T (axn)z
duy_y D 2D LD

dt  (Ax)2 N T (ax)2 N1 T (a2 N2
dt  (Bx)2 N T (Ax)z N1

» Because each of these equations specifies the sliding value of u over time for
each point in space, this approach is called the Method of Lines (MOL)



Method of Lines (MOL)

» All equations are linear in u;, so we can write them in matrix form:

\U:N/

2D 2D
/ (Ax)?2 (Ax)2

D 2D
(Ax)2  (Ax)?
0 D

o :

0

D

(Ax)?
2D

(Ax)?2  (Ax)?

2D
(Ax)?

2D
~ (Ax)?

/

(N+1)x (N + 1) matrix

\U:N/




Method of Lines (MOL)

n
X
delx
diff

5
1

=

i;space(e,l,n);
(x(end)-x(1))/(n-1);
9.05;

A = zeros(n,n);

= -2*diff/(delx”2);
diff/(delx”2);

diff/(delx”2);

A(1,2) = 2*diff/(delx"2);
A(end,end-1) = 2*diff/(delx”"2);



Method of Lines (MOL)

ud = 10/sqgrt(2*pi).*exp(-(x-0.5).72/0.02);

u = zeros(n,1);

['t,U] = (@(tJu) A*u, [9 1@])ue);
figure;
— i = 1:size(t,1)
N'=50 plot(x,u(:,1), »2)
Ax = 0.02 x1label( ) ;
ylabel( P b}
D = 0.05 title(strcat(

,hum2str(round(t(i),3)), )
axis([@ 1 @ 5])
ax=gca;
ax.FontSize = 20;
drawnow







Method of Lines (MOL)

0.4 0.6 0.8
Location, z







Comparison with MATLAB built-in PDE solver

0.4 0.6 0.8
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0.4 0.6
Location, x

Method of Lines (MOL) MATLAB pdepe




Summary

» As compared to ODEs, solving PDEs numerically can be much more
computationally expensive and mathematically painful

« Making some clever approximations for derivatives can enable numerical
approaches to remain accurate up to arbitrary order (at the expense of
computational cost)

« The Method of Lines is an alternative approach that effectively turns a PDE
into a system of ODEs that can be numerically solved using ode23s
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