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Modeling rates of change in space and time

time

𝐶𝐶(𝑥𝑥, 𝑡𝑡) 𝐶𝐶(𝑥𝑥 + Δ𝑥𝑥, 𝑡𝑡) 𝐶𝐶(𝑥𝑥, 𝑡𝑡 + Δ𝑡𝑡) 𝐶𝐶(𝑥𝑥 + Δ𝑥𝑥, 𝑡𝑡 + Δ𝑡𝑡)

𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= lim
Δ𝑥𝑥→0

𝐶𝐶 𝑥𝑥 + Δ𝑥𝑥, 𝑡𝑡 − 𝐶𝐶(𝑥𝑥, 𝑡𝑡)
Δ𝑥𝑥

𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= lim
Δ𝑡𝑡→0

𝐶𝐶 𝑥𝑥, 𝑡𝑡 + Δ𝑡𝑡 − 𝐶𝐶(𝑥𝑥, 𝑡𝑡)
Δ𝑡𝑡



Modeling rates of change in space and time

• Previously, we discussed how we can use MATLAB to numerically solve systems 
of ODEs and ODEs of arbitrary order

• Now we are faced with the task of solving partial differential equations, where 
more than one independent variable exists within the system

• It may not come as a shock, but explicit solutions to PDEs are rare; in addition, 
numerical schemes and programs need to be more careful to remain accurate 
(and stable)



Finite differences for approximating derivatives

• Now, pick 𝑦𝑦0 = 𝑥𝑥 and 𝑦𝑦 = 𝑥𝑥 + Δ𝑥𝑥 (and truncate the series):

𝑓𝑓 𝑦𝑦 = 𝑓𝑓 𝑦𝑦0 + 𝑓𝑓′ 𝑦𝑦0 𝑦𝑦 − 𝑦𝑦0 +
1
2
𝑓𝑓′′ 𝑦𝑦0 𝑦𝑦 − 𝑦𝑦0 2 +

1
6
𝑓𝑓′′′ 𝑦𝑦0 𝑦𝑦 − 𝑦𝑦0 3 + ⋯ 

• Flashback to calculus – Taylor series expansion of a function about a point:

𝑓𝑓 𝑥𝑥 + Δ𝑥𝑥 ≈ 𝑓𝑓 𝑥𝑥 + 𝑓𝑓′ 𝑥𝑥 Δ𝑥𝑥 +
1
2
𝑓𝑓′′ 𝑥𝑥 Δ𝑥𝑥 2

• Alternatively, we could pick 𝑦𝑦 = 𝑥𝑥 − Δ𝑥𝑥 to get:

𝑓𝑓 𝑥𝑥 − Δ𝑥𝑥 ≈ 𝑓𝑓 𝑥𝑥 − 𝑓𝑓′ 𝑥𝑥 Δ𝑥𝑥 +
1
2
𝑓𝑓′′ 𝑥𝑥 Δ𝑥𝑥 2

(∗)

(∗∗)



Finite differences for approximating derivatives

𝑓𝑓 𝑥𝑥 + Δ𝑥𝑥 − 𝑓𝑓 𝑥𝑥 − Δ𝑥𝑥 ≈ 2𝑓𝑓′ 𝑥𝑥 Δ𝑥𝑥

𝑓𝑓 𝑥𝑥 + Δ𝑥𝑥 + 𝑓𝑓 𝑥𝑥 − Δ𝑥𝑥 ≈ 2𝑓𝑓 𝑥𝑥 + 𝑓𝑓′′ 𝑥𝑥 Δ𝑥𝑥 2

• Subtracting (∗∗) from (∗) yields a second order approx. for 𝑓𝑓′ 𝑥𝑥 : 

• Similarly, adding (∗∗) and (∗) yields a second order approx. for 𝑓𝑓′′ 𝑥𝑥 : 

⇒ 𝑓𝑓′ 𝑥𝑥 ≈
𝑓𝑓 𝑥𝑥 + Δ𝑥𝑥 − 𝑓𝑓 𝑥𝑥 − Δ𝑥𝑥

2 Δ𝑥𝑥

⇒ 𝑓𝑓′′ 𝑥𝑥 ≈
𝑓𝑓 𝑥𝑥 + Δ𝑥𝑥 − 2𝑓𝑓 𝑥𝑥 + 𝑓𝑓 𝑥𝑥 − Δ𝑥𝑥

Δ𝑥𝑥 2

• Truncating (∗) before the 𝑓𝑓′′ 𝑥𝑥  term yields a first order approx. for 𝑓𝑓′ 𝑥𝑥 : 

𝑓𝑓 𝑥𝑥 + Δ𝑥𝑥 ≈ 𝑓𝑓 𝑥𝑥 + 𝑓𝑓′ 𝑥𝑥 Δ𝑥𝑥 ⇒ 𝑓𝑓′ 𝑥𝑥 ≈
𝑓𝑓 𝑥𝑥 + Δ𝑥𝑥 − 𝑓𝑓(𝑥𝑥)

Δ𝑥𝑥



Random walks and the (1D) diffusion equation

𝑥𝑥 𝑥𝑥 + Δ𝑥𝑥𝑥𝑥 − Δ𝑥𝑥

𝑥𝑥 𝑥𝑥 + Δ𝑥𝑥𝑥𝑥 − Δ𝑥𝑥 𝑥𝑥 𝑥𝑥 + Δ𝑥𝑥𝑥𝑥 − Δ𝑥𝑥

Time 𝑡𝑡

Time 𝑡𝑡 + Δ𝑡𝑡

𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗,𝐿𝐿 =
1
2

𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗,𝑅𝑅 =
1
2



Random walks and the (1D) diffusion equation

𝑃𝑃(𝑥𝑥, 𝑡𝑡 + Δ𝑡𝑡)

• Consider a person at position 𝑥𝑥 and time 𝑡𝑡 + Δ𝑡𝑡

• To be here, they must have jumped from the left 𝑥𝑥 − Δ𝑥𝑥  or right 𝑥𝑥 + Δ𝑥𝑥  at time 𝑡𝑡 

• Writing this in probabilistic terms (jumping occurs with equal prob.), we have:

=
1
2
𝑃𝑃 𝑥𝑥 + Δ𝑥𝑥, 𝑡𝑡 +

1
2
𝑃𝑃(𝑥𝑥 − Δ𝑥𝑥, 𝑡𝑡)

• Subtract 𝑃𝑃(𝑥𝑥, 𝑡𝑡) from both sides and multiply the LHS by Δ𝑡𝑡
Δ𝑡𝑡

 and RHS by Δ𝑥𝑥
2

Δ𝑥𝑥 2 

⇒ Δ𝑡𝑡
𝑃𝑃 𝑥𝑥, 𝑡𝑡 + Δ𝑡𝑡 − 𝑃𝑃(𝑥𝑥, 𝑡𝑡)

Δ𝑡𝑡
=

Δ𝑥𝑥 2 
2

𝑃𝑃 𝑥𝑥 + Δ𝑥𝑥, 𝑡𝑡 − 2𝑃𝑃 𝑥𝑥, 𝑡𝑡 + 𝑃𝑃(𝑥𝑥 − Δ𝑥𝑥, 𝑡𝑡)
Δ𝑥𝑥 2



• But the fractions on each side are just approx. of derivatives (for small Δ𝑡𝑡,Δ𝑥𝑥):

⇒
𝜕𝜕𝑃𝑃
𝜕𝜕𝑡𝑡

=
Δ𝑥𝑥 2 
2Δ𝑡𝑡

𝜕𝜕2𝑃𝑃
𝜕𝜕𝑥𝑥2

Random walks and the (1D) diffusion equation

𝐷𝐷 ≡
Δ𝑥𝑥 2 
2Δ𝑡𝑡 =

LENGTH 2 
TIME

• This prefactor can be redefined to give us a PDE describing diffusion:

⇒
𝜕𝜕𝑃𝑃
𝜕𝜕𝑡𝑡

= 𝐷𝐷
𝜕𝜕2𝑃𝑃
𝜕𝜕𝑥𝑥2

(NOTE: in some contexts, 𝐷𝐷 is called 𝛼𝛼 and the PDE is called the heat equation)

Δ𝑡𝑡
𝑃𝑃 𝑥𝑥, 𝑡𝑡 + Δ𝑡𝑡 − 𝑃𝑃(𝑥𝑥, 𝑡𝑡)

Δ𝑡𝑡
=

Δ𝑥𝑥 2 
2

𝑃𝑃 𝑥𝑥 + Δ𝑥𝑥, 𝑡𝑡 − 2𝑃𝑃 𝑥𝑥, 𝑡𝑡 + 𝑃𝑃(𝑥𝑥 − Δ𝑥𝑥, 𝑡𝑡)
Δ𝑥𝑥 2



Reaction-Advection-Diffusion Equation in 1D

• Let the concentration of a chemical species at a point in time and space be 𝑢𝑢(𝑥𝑥, 𝑡𝑡)

• In addition to diffusion, this species could undergo some sort of reaction 𝑅𝑅(𝑢𝑢), 
or it may also be affected by some external signal or induced flow (advection) 
at rate 𝑐𝑐

• These two new behaviors can be integrated into our PDE to give us the more 
generalized (1D) Reaction-Advection-Diffusion Equation:

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

= 𝐷𝐷
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+ 𝑐𝑐
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑅𝑅(𝑢𝑢)



Numerically solving (1D) PDEs in MATLAB

• Consider the 1D diffusion equation in the interval 𝑥𝑥 ∈ [0,1] :

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

= 𝐷𝐷
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

, �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑥𝑥=0

= �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑥𝑥=1

= 0, 𝑢𝑢 𝑥𝑥, 0 =
10
2𝜋𝜋

exp −
𝑥𝑥 − 0.5 2

0.02

• These boundary conditions at the endpoints are called no-flux BCs, as they 
essentially act as barriers to stop material from escaping the domain

• The initial condition here is just a Gaussian profile centered in the middle of the 
domain that will let us visualize diffusion at work over time



Numerically solving (1D) PDEs in MATLAB

• Time for some (not-so-helpful) notation from the MathWorks website:

𝑐𝑐 𝑥𝑥, 𝑡𝑡,𝑢𝑢,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

= 𝑥𝑥−𝑛𝑛
𝜕𝜕
𝜕𝜕𝜕𝜕

 𝑥𝑥𝑛𝑛𝑓𝑓 𝑥𝑥, 𝑡𝑡,𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝑠𝑠 𝑥𝑥, 𝑡𝑡,𝑢𝑢,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, 𝑡𝑡𝑖𝑖 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑓𝑓

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

= 𝐷𝐷
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

• We can match 𝑐𝑐,𝑓𝑓, 𝑠𝑠 to our PDE in the following way:

⇒ 𝑐𝑐 = 1,𝑓𝑓 = 𝐷𝐷
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝑠𝑠 = 0 (𝑛𝑛 = 0) as well

0 ≤ 𝑥𝑥 ≤ 1, 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇

coupling flux source



Numerically solving (1D) PDEs in MATLAB

• Plugging in for 𝑓𝑓 at either endpoint lets us solve for 𝑝𝑝, 𝑞𝑞:

𝑝𝑝 𝑥𝑥, 𝑡𝑡,𝑢𝑢 + 𝑞𝑞 𝑥𝑥, 𝑡𝑡 𝑓𝑓 𝑥𝑥, 𝑡𝑡,𝑢𝑢,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

• Boundary conditions are also written in an opaque way:

• We know our system has no-flux conditions at either end: �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑥𝑥=0

= �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑥𝑥=1

= 0

𝑝𝑝 0, 𝑡𝑡,𝑢𝑢 + 𝑞𝑞 0, 𝑡𝑡 𝐷𝐷
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

𝑝𝑝 1, 𝑡𝑡,𝑢𝑢 + 𝑞𝑞 1, 𝑡𝑡 𝐷𝐷
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

⇒
𝑝𝑝 0, 𝑡𝑡,𝑢𝑢 = 0 𝑞𝑞 0, 𝑡𝑡 = 1

𝑝𝑝 1, 𝑡𝑡,𝑢𝑢 = 0 𝑞𝑞 1, 𝑡𝑡 = 1



Coding it all up in MATLAB
• MATLAB has a cookie-cutter way of specifying all these conditions within three 

separate functions that will be run nested inside the larger pdepe function: 

function [c,f,s] = pdefun(x,t,u,dudx)
c = 1;
f = D*dudx;
s = 0;
end

function u0 = pdeic(x)
u0 = 10/sqrt(2*pi).*exp(-(x-0.5).^2/0.02);
end

function [pl,ql,pr,qr] = pdebc(xl,ul,xr,ur,t)
pl = 0;
ql = 1;
pr = 0;
qr = 1;
end

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

= 𝐷𝐷
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

, �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑥𝑥=0

= �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑥𝑥=1

= 0, 𝑢𝑢 𝑥𝑥, 0 =
10
2𝜋𝜋

exp −
𝑥𝑥 − 0.5 2

0.02



Coding it all up in MATLAB
• The only thing left to do is specify our points to solve on in space and time: 

x = linspace(0,1,100);
t = linspace(0,2,100);

• Then, we can run our full function with ICs, BCs, and space and time frame:

sol = pdepe(0,@pdefun,@pdeic,@pdcbc,x,t);

This value tells the system what 
type of geometric symmetry to 
employ (what coordinate system 
are you running over):

 0 if rectangular
 1 if cylindrical
 2 if spherical

PDE function(s)

initial conditions
boundary conditions space variable 

(discretized)

time variable 
(discretized)



Coding it all up in MATLAB






Alternative: turn PDEs into systems of ODEs

• For this approach, we will approximate space derivatives like we did earlier:

𝜕𝜕𝑢𝑢(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥

≈
𝑢𝑢 𝑥𝑥 + Δ𝑥𝑥, 𝑡𝑡  − 𝑢𝑢(𝑥𝑥 − Δ𝑥𝑥, 𝑡𝑡)

2Δ𝑡𝑡
𝜕𝜕2𝑢𝑢(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥2

≈
𝑢𝑢 𝑥𝑥 + Δ𝑥𝑥, 𝑡𝑡 − 2𝑢𝑢 𝑥𝑥, 𝑡𝑡 + 𝑢𝑢(𝑥𝑥 − Δ𝑥𝑥, 𝑡𝑡)

Δ𝑥𝑥 2

• We need to now discretize space by splitting the interval [0,1] into 𝑁𝑁 + 1 points 
equally spaced Δ𝑥𝑥 apart, which lets us write 

Δ𝑥𝑥 =
1 − 0
𝑁𝑁

=
1
𝑁𝑁

, 𝑥𝑥𝑖𝑖 =
𝑖𝑖
𝑁𝑁

, for 𝑖𝑖 = 0,1,2, …𝑁𝑁



Alternative: turn PDEs into systems of ODEs

• If we only discretize in space (but not time), we can rewrite the PDE as:

𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑡𝑡

≈ 𝐷𝐷
𝑢𝑢 𝑥𝑥 + Δ𝑥𝑥, 𝑡𝑡 − 2𝑢𝑢 𝑥𝑥, 𝑡𝑡 + 𝑢𝑢(𝑥𝑥 − Δ𝑥𝑥, 𝑡𝑡)

Δ𝑥𝑥 2

• Plugging in the space discretization gives us: 

Δ𝑥𝑥 =
1 − 0
𝑁𝑁

=
1
𝑁𝑁

, 𝑥𝑥𝑖𝑖 =
𝑖𝑖
𝑁𝑁

, for 𝑖𝑖 = 0,1,2, …𝑁𝑁

⇒
𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝑡𝑡)

𝑑𝑑𝑑𝑑
≈ 𝐷𝐷

𝑢𝑢 𝑥𝑥𝑖𝑖+1, 𝑡𝑡 − 2𝑢𝑢 𝑥𝑥𝑖𝑖 , 𝑡𝑡 + 𝑢𝑢(𝑥𝑥𝑖𝑖−1, 𝑡𝑡)
Δ𝑥𝑥 2



Alternative: turn PDEs into systems of ODEs

• Using a shorthand notation for the space variable, we can write:

𝑑𝑑𝑢𝑢𝑖𝑖
𝑑𝑑𝑡𝑡

≈ 𝐷𝐷
𝑢𝑢𝑖𝑖+1 − 2𝑢𝑢𝑖𝑖 + 𝑢𝑢𝑖𝑖−1

Δ𝑥𝑥 2 =
𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢𝑖𝑖+1 −

2𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢𝑖𝑖 +

𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢𝑖𝑖−1

• Thus, we have a system of ODEs as follows:

𝑑𝑑𝑢𝑢0
𝑑𝑑𝑡𝑡

=
𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢1 −

2𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢0 +

𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢−1

𝑑𝑑𝑢𝑢1
𝑑𝑑𝑡𝑡

=
𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢2 −

2𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢1 +

𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢0

𝑑𝑑𝑢𝑢𝑁𝑁−1
𝑑𝑑𝑡𝑡

=
𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢𝑁𝑁 −

2𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢𝑁𝑁−1 +

𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢𝑁𝑁−2

𝑑𝑑𝑢𝑢𝑁𝑁
𝑑𝑑𝑡𝑡

=
𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢𝑁𝑁+1 −

2𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢𝑁𝑁 +

𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢𝑁𝑁−1

⋮ ⋮
What is going on with these points?



Alternative: turn PDEs into systems of ODEs

• To take care of these terms, we need to consider our boundary conditions:

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑥𝑥=0

= �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑥𝑥=1

= 0, ⇒
𝜕𝜕𝑢𝑢0
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑢𝑢𝑁𝑁
𝜕𝜕𝜕𝜕

= 0

• Let’s use our second order accurate definition of the derivative we found earlier:

𝑓𝑓′ 𝑥𝑥 ≈
𝑓𝑓 𝑥𝑥 + Δ𝑥𝑥 − 𝑓𝑓 𝑥𝑥 − Δ𝑥𝑥

2 Δ𝑥𝑥

𝜕𝜕𝑢𝑢0
𝜕𝜕𝜕𝜕

≈
𝑢𝑢1 − 𝑢𝑢−1

2 Δ𝑥𝑥
= 0

𝜕𝜕𝑢𝑢𝑁𝑁
𝜕𝜕𝜕𝜕

≈
𝑢𝑢𝑁𝑁+1 − 𝑢𝑢𝑁𝑁−1

2 Δ𝑥𝑥
= 0

⇒ 𝑢𝑢−1 = 𝑢𝑢1

⇒ 𝑢𝑢𝑁𝑁+1 = 𝑢𝑢𝑁𝑁−1



Alternative: turn PDEs into systems of ODEs

• We can now substitute for our weird problem points 𝑢𝑢−1,𝑢𝑢𝑁𝑁+1:  
𝑑𝑑𝑢𝑢0
𝑑𝑑𝑡𝑡 =

2𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢1 −

2𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢0

𝑑𝑑𝑢𝑢1
𝑑𝑑𝑡𝑡 =

𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢2 −

2𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢1 +

𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢0

𝑑𝑑𝑢𝑢𝑁𝑁−1
𝑑𝑑𝑡𝑡 =

𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢𝑁𝑁 −

2𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢𝑁𝑁−1 +

𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢𝑁𝑁−2

𝑑𝑑𝑢𝑢𝑁𝑁
𝑑𝑑𝑡𝑡

= −
2𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢𝑁𝑁 +

2𝐷𝐷
Δ𝑥𝑥 2 𝑢𝑢𝑁𝑁−1

⋮ ⋮

• Because each of these equations specifies the sliding value of 𝑢𝑢 over time for 
each point in space, this approach is called the Method of Lines (MOL) 



Method of Lines (MOL)

• All equations are linear in 𝑢𝑢𝑖𝑖, so we can write them in matrix form: 

𝑑𝑑
𝑑𝑑𝑡𝑡

𝑢𝑢0
𝑢𝑢1
𝑢𝑢2
⋮
𝑢𝑢𝑁𝑁

=

𝑢𝑢0
𝑢𝑢1
𝑢𝑢2
⋮
𝑢𝑢𝑁𝑁

−
2𝐷𝐷
Δ𝑥𝑥 2

2𝐷𝐷
Δ𝑥𝑥 2 0

𝐷𝐷
Δ𝑥𝑥 2 −

2𝐷𝐷
Δ𝑥𝑥 2

𝐷𝐷
Δ𝑥𝑥 2

0
𝐷𝐷
Δ𝑥𝑥 2 −

2𝐷𝐷
Δ𝑥𝑥 2

⋯

0

0

0

⋮ ⋱ ⋮

0  0  0 ⋯
2𝐷𝐷
Δ𝑥𝑥 2 −

2𝐷𝐷
Δ𝑥𝑥 2

𝑁𝑁 + 1  x 𝑁𝑁 + 1  matrix



Method of Lines (MOL)

%Initialize values
n = 51;
x = linspace(0,1,n);
delx = (x(end)-x(1))/(n-1);
diff = 0.05;

%Creating update matrix (recursive formulas)
A = zeros(n,n);

for i = 1:n
 for j = 1:n
  if i == j
   A(i,j) = -2*diff/(delx^2);
  elseif i == j+1
   A(i,j) = diff/(delx^2);
  elseif i == j-1
   A(i,j) = diff/(delx^2);
  end
 end
end

A(1,2) = 2*diff/(delx^2);
A(end,end-1) = 2*diff/(delx^2);



Method of Lines (MOL)

𝑁𝑁 = 50
Δ𝑥𝑥 = 0.02

𝐷𝐷 = 0.05

u0 = 10/sqrt(2*pi).*exp(-(x-0.5).^2/0.02);

u = zeros(n,1);
[t,u] = ode23s(@(t,u) A*u,[0 10],u0);

figure;
for i = 1:size(t,1)
 plot(x,u(:,i),'LineWidth',2)
 xlabel('$x$', 'interpreter','latex’)
 ylabel('$u(x,t)$', 'interpreter','latex’)
 title(strcat('$t = 
',num2str(round(t(i),3)),'$'),'interpreter','latex’)
 axis([0 1 0 5])
 ax=gca;
 ax.FontSize = 20;
 drawnow
end






Method of Lines (MOL)






Comparison with MATLAB built-in PDE solver

Method of Lines (MOL) MATLAB pdepe



Summary

• As compared to ODEs, solving PDEs numerically can be much more 
computationally expensive and mathematically painful

• Making some clever approximations for derivatives can enable numerical 
approaches to remain accurate up to arbitrary order (at the expense of 
computational cost)

• The Method of Lines is an alternative approach that effectively turns a PDE 
into a system of ODEs that can be numerically solved using ode23s
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