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Resources
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/

* https://www.oreilly.com/library/vie
w/deep-learning-
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What types of problems can computers
solve?



What types of problems can computers
solve?

Easy for Computers Hard for Computers
* Math problems * Recognizing spoken words
* Working with lots of data * |dentifying objects in images

* Games with formal rules * Understanding data



What types of problems can computers
solve?

Easy for Computers Hard for Computers

* Math problems * Recognizing spoken words

* Working with lots of data * |dentifying objects in images
* Games with formal rules * Understanding data

Computers excel at tasks where the key representations of the data
are well defined



Three flavors of “Al”

* Rule based systems
* Classic Machine Learning
* Representation Learning



Rule based systems

* |[f condition X then outputY

* Relies on the programmer providing all necessary information for
making a decision including:
* The data in a simple format
* The exact decision method and boundary values are provided by the
programmer

* Example: FACS sorting



Example FACS Sorting
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Example FACS Sorting
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Rule based systems

* “The difficulties faced by systems relying on hard-coded
knowledge suggest that Al systems need the ability to acquire
their own knowledge, by extracting patterns from raw data. This
capability is known as machine learning.”



Classical Machine Learning

* The program optimizes a small number of parameters (learning)

* Relies on the programmer providing some structure for making a
decision including:
* The data in a simple format
* A general framework for decision making is provided by the programmer
 Some feedback mechanism for how far off a prediction is from the truth

* Example: Linear Regression



Linear Regression
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Linear Regression

* Program makes a guess for what the parameters (slope and
intercept) should be

* Program uses the formula residuals = actual y — predicted y for
each point to assess how well it predicted

* Program adjusts parameters to minimize the residuals
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Classical Machine Learning

* The program optimizes a small number of parameters (learning)
* Relies on the programmer providing some structure for making a
decision including:
* The data in a simple format

* A general framework for decision making is provided by the programmer
 Some feedback mechanism for how far off a prediction is from the truth

* Example: Linear Regression
* Example: Random Forest (ilastik)



How ilastik works

e Random Forest of Decision Trees
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Decision Trees

Trying to figure out if pixel * is a puncta or
background

We know the Intensity of * (range is 0-255)

We know the position of * and the intensity of all
of the pixels around it

What would be a good first feature to consider
to help decide if * is a puncta or background?



Decision Trees

* Trying to figure out if pixel * is a puncta or
background

* We know the Intensity of * (range is 0-255)

* We know the position of * and the intensity of all
of the pixels around it

* What would be a good first feature to consider
to help decide if * is a puncta or background?

Is * bright enough to be a puncta?



Decision Trees

Try an intensity cutoff

Yes

No

This is the same as traditional thresholding, but we can do better




Decision Trees

Yes

3x3 Neighborhood > 180




Decision Trees

3x3 Neighborhood > 180
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lewing Features in Feature Selection Window
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lewing Features in
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Viewing Features in Feature Selection Window
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Classical Machine Learning

* The program optimizes a small number of parameters (learning)
* Relies on the programmer providing some structure for making a
decision including:
* The data in a simple format

* A general framework for decision making is provided by the programmer
 Some feedback mechanism for how far off a prediction is from the truth

* Example: Linear Regression
* Example: Random Forest (ilastik)



Representation Learning

* For some applications, it is difficult to say which features of a data
set are important for a decision

* We may want the algorithm to discover novel combinations of
features that could explain the data better than features we have

as input
* We may want to eliminate as much of our own bias as possible



Representation Learning

* The program not only learns parameters, but learns which
representations of the data are most useful for decision making

* Relies on the programmer providing a minimal framework for
making a decision including:
* The data in a complex, raw format
* Some structure for how many features to learn and how they should be

connected to eachother
 Some feedback mechanism for how far off a prediction is from the truth

* Example: Artificial Neural Networks



Artificial Neural Networks
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Artificial Neural Networks
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Three flavors of “Al”
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When should you use each flavor of Al?

* |[f the relevant values and computations are known by the
experimenter
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When should you use each flavor of Al?

* |[f the relevant values and computations are known by the
experimenter

* Use rule-based systems

* |[f some relevant features are known, but the best values of the
parameters are unknown

* Classic machine learning

* |f there is no clear set of features that best represent the data



When should you use each flavor of Al?

* |[f the relevant values and computations are known by the
experimenter

* Use rule-based systems

* |[f some relevant features are known, but the best values of the
parameters are unknown

* Classic machine learning

* |f there is no clear set of features that best represent the data
* Representation learning/ Deep learning



Biological Example: RNAseq data

* RNAseq data from M and F animals collected at different ages

* You want to determine how variable the samples are and if there
are effects of sex and/or age

* You’ve measured thousands of genes and don’t know which genes
would be changing

https://carpentries-incubator.github.io/bioc-rnaseq/05-exploratory-gc.html



Biological Example: RNAseq data

* RNAseq data from M and F animals collected at different ages

* You want to determine how variable the samples are and if there
are effects of sex and/or age

* You’ve measured thousands of genes and don’t know which genes
would be changing

* “We need a better representation of the data to more easily
visualize the differences between samples

https://carpentries-incubator.github.io/bioc-rnaseq/05-exploratory-gc.html



Biological Example: RNAseq data PCA
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Biological Example: Image Segmentation




Biological Example: Image Segmentation

U-net: Convolutional networks for biomedical image segmentation
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¢ Save DY Cite Cited by 100570 Related articles All 32 versions

64 B4
128 64 64 2
input
; output
image [w{» .
J **|*| segmentation
tile ol o o =
Sl = A = map
[l = =] = =z s
A B CEEE
s s
o) O oo
1 - o
[f+] QTs] NTs]
'123 128
256 128
=Sl EH E
& Sl
[a¥] N t
512 256
?_I = cONnv 3x3, RelLU
= copy and crop

¥ max pool 2x2
4 up-conv 2x2
= CONV 1x1




Biological Example: Image Segmentation

* How does the neural network actually learn?
* Weights in the network are randomly initialized
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Biological Example: Image Segmentation

* How does the neural network actually learn?
* Weights in the network are randomly initialized
* Loss function compares if each pixel is categorized correctly
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Biological Example: Image Segmentation

* How does the neural network actually learn?
* Weights in the network are randomly initialized
* Loss function compares if each pixel is categorized correctly

* Gradient descent is used to move the weights in the network towards the
correct values
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Biological Example: Image Segmentation

* How does the neural network actually learn?
* Weights in the network are randomly initialized
* Loss function compares if each pixel is categorized correctly

* Gradient descent is used to move the weights in the network towards the

correct values
Cost

A

Learning step

Minimum

Random W w
initial value



Biological Example: Image Segmentation

* How does the neural network actually learn?
* Weights in the network are randomly initialized
* Loss function compares if each pixel is categorized correctly

* Gradient descent is used to move the weights in the network towards the

correct values
Cost

A

Learning step

Minimum

Random W w
initial value



Biological Example: Image Segmentation
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