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Resources

• https://www.deeplearningbook.org
/

• https://www.oreilly.com/library/vie
w/deep-learning-
for/9781492039822/

https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
https://www.oreilly.com/library/view/deep-learning-for/9781492039822/
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What types of problems can computers 
solve?
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• Recognizing spoken words
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What types of problems can computers 
solve?
Easy for Computers
• Math problems
• Working with lots of data
• Games with formal rules

Hard for Computers
• Recognizing spoken words
• Identifying objects in images
• Understanding data

Computers excel at tasks where the key representations of the data 
are well defined



Three flavors of “AI”

• Rule based systems
• Classic Machine Learning
• Representation Learning



Rule based systems

• If condition X then output Y
• Relies on the programmer providing all necessary information for 

making a decision including:
• The data in a simple format
• The exact decision method and boundary values are provided by the 

programmer

• Example: FACS sorting
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Rule based systems

• “The difficulties faced by systems relying on hard-coded 
knowledge suggest that AI systems need the ability to acquire 
their own knowledge, by extracting patterns from raw data. This 
capability is known as machine learning.”



Classical Machine Learning

• The program optimizes a small number of parameters (learning)
• Relies on the programmer providing some structure for making a 

decision including:
• The data in a simple format
• A general framework for decision making is provided by the programmer
• Some feedback mechanism for how far off a prediction is from the truth

• Example: Linear Regression



Linear Regression
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Linear Regression

• Program makes a guess for what the parameters (slope and 
intercept) should be

• Program uses the formula residuals = actual y – predicted y for 
each point to assess how well it predicted

• Program adjusts parameters to minimize the residuals
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Classical Machine Learning

• The program optimizes a small number of parameters (learning)
• Relies on the programmer providing some structure for making a 

decision including:
• The data in a simple format
• A general framework for decision making is provided by the programmer
• Some feedback mechanism for how far off a prediction is from the truth

• Example: Linear Regression
• Example: Random Forest (ilastik)



How ilastik works

• Random Forest of Decision Trees 



Decision Trees

*

• Trying to figure out if pixel * is a puncta or 
background

• We know the Intensity of * (range is 0-255)
• We know the position of * and the intensity of all 

of the pixels around it
• What would be a good first feature to consider 

to help decide if * is a puncta or background?



Decision Trees

*

• Trying to figure out if pixel * is a puncta or 
background

• We know the Intensity of * (range is 0-255)
• We know the position of * and the intensity of all 

of the pixels around it
• What would be a good first feature to consider 

to help decide if * is a puncta or background?

Is * bright enough to be a puncta?



Decision Trees

*
int > 200

Try an intensity cutoff

No Yes

Background Puncta

This is the same as traditional thresholding, but we can do better



Decision Trees
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Decision Trees

*

int > 200

No Yes

Puncta3x3 Neighborhood > 180

No Yes

Puncta3x3 Edge

No Yes

5x5 Edge

No Yes

Puncta

PunctaBackground



Random Forest

• ilastik uses 100 decision trees that are randomly 
generated to be slightly different from each other

• Each one ”votes” for whether a pixel is foreground 
or background



Viewing Features in Feature Selection Window
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Viewing Features in Feature Selection Window



Classical Machine Learning

• The program optimizes a small number of parameters (learning)
• Relies on the programmer providing some structure for making a 

decision including:
• The data in a simple format
• A general framework for decision making is provided by the programmer
• Some feedback mechanism for how far off a prediction is from the truth

• Example: Linear Regression
• Example: Random Forest (ilastik)



Representation Learning

• For some applications, it is difficult to say which features of a data 
set are important for a decision

• We may want the algorithm to discover novel combinations of 
features that could explain the data better than features we have 
as input

• We may want to eliminate as much of our own bias as possible



Representation Learning

• The program not only learns parameters, but learns which 
representations of the data are most useful for decision making

• Relies on the programmer providing a minimal framework for 
making a decision including:

• The data in a complex, raw format
• Some structure for how many features to learn and how they should be 

connected to eachother
• Some feedback mechanism for how far off a prediction is from the truth

• Example: Artificial Neural Networks



Artificial Neural Networks



Artificial Neural Networks



Three flavors of “AI”



When should you use each flavor of AI?

• If the relevant values and computations are known by the 
experimenter
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When should you use each flavor of AI?

• If the relevant values and computations are known by the 
experimenter

• Use rule-based systems

• If some relevant features are known, but the best values of the 
parameters are unknown

• Classic machine learning

• If there is no clear set of features that best represent the data
• Representation learning/ Deep learning



Biological Example: RNAseq data

• RNAseq data from M and F animals collected at different ages
• You want to determine how variable the samples are and if there 

are effects of sex and/or age
• You’ve measured thousands of genes and don’t know which genes 

would be changing

https://carpentries-incubator.github.io/bioc-rnaseq/05-exploratory-qc.html



Biological Example: RNAseq data

• RNAseq data from M and F animals collected at different ages
• You want to determine how variable the samples are and if there 

are effects of sex and/or age
• You’ve measured thousands of genes and don’t know which genes 

would be changing
• ^We need a better representation of the data to more easily 

visualize the differences between samples

https://carpentries-incubator.github.io/bioc-rnaseq/05-exploratory-qc.html



Biological Example: RNAseq data PCA

https://carpentries-incubator.github.io/bioc-rnaseq/05-exploratory-qc.html



Biological Example: Image Segmentation



Biological Example: Image Segmentation



Biological Example: Image Segmentation

• How does the neural network actually learn?
• Weights in the network are randomly initialized
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Biological Example: Image Segmentation

• How does the neural network actually learn?
• Weights in the network are randomly initialized
• Loss function compares if each pixel is categorized correctly
• Gradient descent is used to move the weights in the network towards the 

correct values



Biological Example: Image Segmentation
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